# (C) Copyright 2005-2020 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!
""" Core Trait definitions.
"""
import collections.abc
import datetime
from importlib import import_module
import operator
import re
import sys
try:
from os import fspath
except ImportError:
fspath = None
from os.path import isfile, isdir
from types import FunctionType, MethodType, ModuleType
import uuid
from .constants import DefaultValue, TraitKind, ValidateTrait
from .trait_base import (
strx,
get_module_name,
HandleWeakRef,
class_of,
RangeTypes,
safe_contains,
SequenceTypes,
TypeTypes,
Undefined,
TraitsCache,
xgetattr,
)
from .trait_converters import trait_from, trait_cast
from .trait_dict_object import TraitDictEvent, TraitDictObject
from .trait_errors import TraitError
from .trait_list_object import TraitListEvent, TraitListObject
from .trait_set_object import TraitSetEvent, TraitSetObject
from .trait_type import TraitType, _infer_default_value_type
from .traits import (
Trait,
_TraitMaker,
_InstanceArgs,
)
from .util.import_symbol import import_symbol
# TraitsUI integration imports
from .editor_factories import (
code_editor,
html_editor,
password_editor,
shell_editor,
date_editor,
datetime_editor,
time_editor,
list_editor,
)
# Constants
SetTypes = SequenceTypes + (set,)
# Numeric type fast validator definitions
# A few words about the next block of code:
# The coerce validator is a generic validator for possibly coercible types
# (see validate_trait_coerce_type in ctraits.c).
#
# The tuples below are of the form
# (ValidateTrait.coerce, type1, [type2, type3, ...],
# [None, ctype1, [ctype2, ...]])
#
# 'type1' corresponds to the main type for the trait
# 'None' acts as the separator between 'types' and 'ctypes' (coercible types)
#
# The validation passes if:
# 1) The trait value type is (a subtype of) one of 'type1', 'type2', ...
# in which case the value is returned as-is
# or
# 2) The trait value type is (a subtype of) one of 'ctype1', 'ctype2', ...
# in which case the value is returned coerced to trait type using
# 'return type1(value')
try:
# The numpy enhanced definitions:
from numpy import integer, floating, complexfloating, bool_
int_fast_validate = (ValidateTrait.coerce, int, integer)
float_fast_validate = (
ValidateTrait.coerce,
float,
floating,
None,
int,
integer,
)
complex_fast_validate = (
ValidateTrait.coerce,
complex,
complexfloating,
None,
float,
floating,
int,
integer,
)
bool_fast_validate = (ValidateTrait.coerce, bool, None, bool_)
# Tuple or single type suitable for an isinstance check.
_BOOL_TYPES = (bool, bool_)
except ImportError:
# The standard python definitions (without numpy):
int_fast_validate = (ValidateTrait.coerce, int)
float_fast_validate = (ValidateTrait.coerce, float, None, int)
complex_fast_validate = (ValidateTrait.coerce, complex, None, float, int)
bool_fast_validate = (ValidateTrait.coerce, bool)
# Tuple or single type suitable for an isinstance check.
_BOOL_TYPES = bool
def default_text_editor(trait, type=None):
""" Return a default text editor for a trait.
Parameters
----------
trait : TraitType
The trait we are constructing the editor for.
type : callable, optional
A callable (usually a Python type) to use to evaluate the text content
of the editor and return the correct type of value for the trait.
Returns
-------
TextEditor
A TraitsUI TextEditor instance for the trait.
"""
auto_set = trait.auto_set
if auto_set is None:
auto_set = True
enter_set = trait.enter_set or False
from traitsui.api import TextEditor
if type is None:
return TextEditor(auto_set=auto_set, enter_set=enter_set)
return TextEditor(auto_set=auto_set, enter_set=enter_set, evaluate=type)
# Generic validators
def _validate_int(value):
""" Convert an integer-like Python object to an int, or raise TypeError.
"""
if type(value) is int:
return value
else:
return int(operator.index(value))
def _validate_float(value):
""" Convert an arbitrary Python object to a float, or raise TypeError.
"""
if type(value) is float: # fast path for common case
return value
try:
nb_float = type(value).__float__
except AttributeError:
raise TypeError(
"Object of type {!r} not convertible to float".format(type(value))
)
return nb_float(value)
# Trait Types
class Any(TraitType):
""" A trait type whose value can be anything.
"""
#: The default value for the trait:
default_value = None
#: A description of the type of value this trait accepts:
info_text = "any value"
class BaseInt(TraitType):
""" A trait type whose value must be an int.
Values which support the Python index protocol will validate and will be
converted to the corresponding int value.
"""
#: The function to use for evaluating strings to this type:
evaluate = int
#: The default value for the trait:
default_value = 0
#: A description of the type of value this trait accepts:
info_text = "an integer"
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
"""
try:
return _validate_int(value)
except TypeError:
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
return default_text_editor(self, int)
class Int(BaseInt):
""" A fast-validating trait type whose value must be an integer.
Values which support the Python index protocol will validate and will be
converted to the corresponding int value.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.int,)
class BaseFloat(TraitType):
""" A trait type whose value must be a float.
Values which support automatic conversion to floats via the Python
__float__ method will validate and will be converted to the corresponding
float value.
"""
#: The function to use for evaluating strings to this type:
evaluate = float
#: The default value for the trait:
default_value = 0.0
#: A description of the type of value this trait accepts:
info_text = "a float"
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return _validate_float(value)
except TypeError:
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
return default_text_editor(self, float)
class Float(BaseFloat):
""" A fast-validating trait type whose value must be a float.
Values which support automatic conversion to floats via the Python
__float__ method will validate and will be converted to the corresponding
float value.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.float,)
class BaseComplex(TraitType):
""" A trait type whose value must be a complex number.
Integers and floating-point numbers will be converted to the
corresponding complex value.
"""
#: The function to use for evaluating strings to this type:
evaluate = complex
#: The default value for the trait:
default_value = 0.0 + 0.0j
#: A description of the type of value this trait accepts:
info_text = "a complex number"
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if isinstance(value, complex):
return value
if isinstance(value, (float, int)):
return complex(value)
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
return default_text_editor(self, complex)
class Complex(BaseComplex):
""" A fast-validating trait type whose value must be a complex number.
Integers and floating-point numbers will be converted to the
corresponding complex value.
"""
#: The C-level fast validator to use:
fast_validate = complex_fast_validate
class BaseStr(TraitType):
""" A trait type whose value must be a string.
"""
#: The default value for the trait:
default_value = ""
#: A description of the type of value this trait accepts:
info_text = "a string"
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if isinstance(value, str):
return value
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
from .editor_factories import multi_line_text_editor
auto_set = self.auto_set
if auto_set is None:
auto_set = True
enter_set = self.enter_set or False
return multi_line_text_editor(auto_set, enter_set)
class Str(BaseStr):
""" A fast-validating trait type whose value must be a complex number.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.coerce, str)
class Title(Str):
""" A Str trait which by default uses a TraitsUI TitleEditor.
"""
def create_editor(self):
""" Returns the default traits UI editor to use for a trait.
"""
from traitsui.api import TitleEditor
if hasattr(self, "allow_selection"):
return TitleEditor(allow_selection=self.allow_selection)
else:
return TitleEditor()
class BaseBytes(TraitType):
""" A trait type whose value must be a bytestring.
"""
#: The default value for the trait:
default_value = b""
#: A description of the type of value this trait accepts:
info_text = "a bytes string"
#: An encoding to use with TraitsUI editors
encoding = None
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if isinstance(value, bytes):
return value
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
from .traits import bytes_editor
auto_set = self.auto_set
if auto_set is None:
auto_set = True
enter_set = self.enter_set or False
return bytes_editor(auto_set, enter_set, self.encoding)
class Bytes(BaseBytes):
""" A fast-validating trait type whose value must be a bytestring.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.coerce, bytes)
class BaseBool(TraitType):
""" A trait type whose value must be a bool.
"""
#: The function to use for evaluating strings to this type:
evaluate = bool
#: The default value for the trait:
default_value = False
#: A description of the type of value this trait accepts:
info_text = "a boolean"
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if isinstance(value, _BOOL_TYPES):
return bool(value)
self.error(object, name, value)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
from traitsui.api import BooleanEditor
return BooleanEditor()
class Bool(BaseBool):
""" A fast-validating trait type whose value must be a bool.
"""
#: The C-level fast validator to use:
fast_validate = bool_fast_validate
class BaseCInt(BaseInt):
""" A coercing trait type whose value is an integer.
"""
#: The function to use for evaluating strings to this type:
evaluate = int
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return int(value)
except (ValueError, TypeError):
self.error(object, name, value)
class CInt(BaseCInt):
""" A fast-validating, coercing trait type whose value is an int.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, int)
class BaseCFloat(BaseFloat):
""" A coercing trait type whose value is a float.
"""
#: The function to use for evaluating strings to this type:
evaluate = float
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return float(value)
except (ValueError, TypeError):
self.error(object, name, value)
class CFloat(BaseCFloat):
""" A fast-validating, coercing trait type whose value is a float.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, float)
class BaseCComplex(BaseComplex):
""" A coercing trait type whose value is a complex number.
"""
#: The function to use for evaluating strings to this type:
evaluate = complex
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return complex(value)
except (ValueError, TypeError):
self.error(object, name, value)
class CComplex(BaseCComplex):
""" A fast-validating, coercing trait type whose value is a complex number.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, complex)
class BaseCStr(BaseStr):
""" A coercing trait type whose value is a string.
"""
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return str(value)
except:
self.error(object, name, value)
class CStr(BaseCStr):
""" A fast-validating, coercing trait type whose value is a string.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, str)
class BaseCBytes(BaseBytes):
""" A coercing trait type whose value is a bytestring.
"""
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return bytes(value)
except:
self.error(object, name, value)
class CBytes(BaseCBytes):
""" A fast-validating, coercing trait type whose value is a bytestring.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, bytes)
class BaseCBool(BaseBool):
""" A coercing trait type whose value is a bool.
"""
#: The function to use for evaluating strings to this type:
evaluate = bool
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
try:
return bool(value)
except:
self.error(object, name, value)
class CBool(BaseCBool):
""" A fast-validating, coercing trait type whose value is a bool.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.cast, bool)
class String(TraitType):
""" A trait type whose value must be a string with optional constraints.
The value is a string whose length is in a specified range, and which
optionally matches a specified regular expression.
Parameters
----------
value : str
The default value for the string.
minlen : integer
The minimum length allowed for the string.
maxlen : integer
The maximum length allowed for the string.
regex : str
A Python regular expression that the string must match.
**metadata
The trait metadata for the trait.
Attributes
----------
minlen : integer
The minimum length allowed for the string.
maxlen : integer
The maximum length allowed for the string.
regex : str
A Python regular expression that the string must match.
"""
def __init__(
self, value="", minlen=0, maxlen=sys.maxsize, regex="", **metadata
):
super(String, self).__init__(value, **metadata)
self.minlen = max(0, minlen)
self.maxlen = max(self.minlen, maxlen)
self.regex = regex
self._init()
def _init(self):
""" Completes initialization of the trait at construction or unpickling
time.
"""
self._validate = "validate_all"
if self.regex != "":
self.match = re.compile(self.regex).match
if (self.minlen == 0) and (self.maxlen == sys.maxsize):
self._validate = "validate_regex"
elif (self.minlen == 0) and (self.maxlen == sys.maxsize):
self._validate = "validate_str"
else:
self._validate = "validate_len"
def validate(self, object, name, value):
""" Validates that the value is a valid string.
"""
return getattr(self, self._validate)(object, name, value)
def validate_all(self, object, name, value):
""" Validates that the value is a valid string in the specified length
range which matches the specified regular expression.
"""
try:
value = strx(value)
if (self.minlen <= len(value) <= self.maxlen) and (
self.match(value) is not None
):
return value
except:
pass
self.error(object, name, value)
def validate_str(self, object, name, value):
""" Validates that the value is a valid string.
"""
try:
return strx(value)
except:
pass
self.error(object, name, value)
def validate_len(self, object, name, value):
""" Validates that the value is a valid string in the specified length
range.
"""
try:
value = strx(value)
if self.minlen <= len(value) <= self.maxlen:
return value
except:
pass
self.error(object, name, value)
def validate_regex(self, object, name, value):
""" Validates that the value is a valid string which matches the
specified regular expression.
"""
try:
value = strx(value)
if self.match(value) is not None:
return value
except:
pass
self.error(object, name, value)
def info(self):
""" Returns a description of the trait.
"""
msg = ""
if (self.minlen != 0) and (self.maxlen != sys.maxsize):
msg = " between %d and %d characters long" % (
self.minlen,
self.maxlen,
)
elif self.maxlen != sys.maxsize:
msg = " <= %d characters long" % self.maxlen
elif self.minlen != 0:
msg = " >= %d characters long" % self.minlen
if self.regex != "":
if msg != "":
msg += " and"
msg += " matching the pattern '%s'" % self.regex
return "a string" + msg
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
return default_text_editor(self)
def __getstate__(self):
""" Returns the current state of the trait.
"""
result = self.__dict__.copy()
for name in ["validate", "match"]:
if name in result:
del result[name]
return result
def __setstate__(self, state):
""" Sets the current state of the trait.
"""
self.__dict__.update(state)
self._init()
class Regex(String):
""" A trait type whose value must match a regular expression.
Parameters
----------
value : str
The default value of the trait.
regex : str
The regular expression that the trait value must match.
**metadata
Trait metadata.
"""
def __init__(self, value="", regex=".*", **metadata):
super(Regex, self).__init__(value=value, regex=regex, **metadata)
class Code(String):
""" A trait type whose value holds a string of source code.
Validation does not perform any sort of syntax checking. The default
TraitsUI editor is a CodeEditor.
"""
#: The standard metadata for the trait:
metadata = {"editor": code_editor}
class HTML(String):
""" A trait type whose value holds an HTML string.
The validation of the value does not enforce HTML syntax. The default
TraitsUI editor is an HTMLEditor.
"""
#: The standard metadata for the trait:
metadata = {"editor": html_editor}
class Password(String):
""" A trait type whose value holds a password string.
The default TraitsUI editor is an PasswordEditor, which obscures text
entered by the user.
"""
#: The standard metadata for the trait:
metadata = {"editor": password_editor}
class BaseCallable(TraitType):
""" A trait type whose value must be a Python callable.
"""
#: The standard metadata for the trait:
metadata = {"copy": "ref"}
#: The default value for the trait:
default_value = None
#: A description of the type of value this trait accepts:
info_text = "a callable value"
def validate(self, object, name, value):
""" Validates that the value is a Python callable.
"""
if (value is None) or callable(value):
return value
self.error(object, name, value)
class Callable(BaseCallable):
""" A fast-validating trait type whose value must be a Python callable.
"""
def __init__(self, value=None, allow_none=True, **metadata):
self.fast_validate = (ValidateTrait.callable, allow_none)
default_value = metadata.pop("default_value", value)
super().__init__(default_value, **metadata)
class BaseType(TraitType):
""" A trait type whose value must be an instance of a Python type.
This is an abstract class and should not be directly instantiated.
"""
def validate(self, object, name, value):
""" Validates that the value is a Python callable.
"""
if isinstance(value, self.fast_validate[1:]):
return value
self.error(object, name, value)
class This(BaseType):
""" A trait type whose value must be an instance of the defining class.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.self_type,)
#: A description of the type of value this trait accepts:
info_text = "an instance of the same type as the receiver"
def __init__(self, value=None, allow_none=True, **metadata):
super(This, self).__init__(value, **metadata)
if allow_none:
self.fast_validate = (ValidateTrait.self_type, None)
self.validate = self.validate_none
self.info = self.info_none
def validate(self, object, name, value):
if isinstance(value, object.__class__):
return value
self.error(object, name, value)
def validate_none(self, object, name, value):
if isinstance(value, object.__class__) or (value is None):
return value
self.error(object, name, value)
def info(self):
return "an instance of the same type as the receiver"
def info_none(self):
return "an instance of the same type as the receiver or None"
class self(This):
""" A trait type whose default value is the object containing the trait.
The trait can be assigned to, but any new value must be an instance of
the defining class.
"""
#: The default value type to use (i.e. 'self'):
default_value_type = DefaultValue.object
class Function(TraitType):
""" A trait type whose value must be a function.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.coerce, FunctionType)
#: A description of the type of value this trait accepts:
info_text = "a function"
class Method(TraitType):
""" A trait type whose value must be a method.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.coerce, MethodType)
#: A description of the type of value this trait accepts:
info_text = "a method"
class Module(TraitType):
""" A trait type whose value must be a module.
"""
#: The C-level fast validator to use:
fast_validate = (ValidateTrait.coerce, ModuleType)
#: A description of the type of value this trait accepts:
info_text = "a module"
class Python(TraitType):
""" A trait type that behaves as a standard Python attribute.
This trait type allows any value to be assigned, and raises an
ValueError if an attempt is made to get the value before one has been
assigned. It has no default value. This trait is most often used in
conjunction with wildcard naming. See the *Traits User Manual* for
details on wildcards.
"""
#: The standard metadata for the trait:
metadata = {"type": "python"}
#: The default value for the trait:
default_value = Undefined
class ReadOnly(TraitType):
""" A trait type that is write-once, and then read-only.
The initial value of the attribute is the special, singleton object
Undefined. The trait allows any value to be assigned to the attribute
if the current value is the Undefined object. Once any other value is
assigned, no further assignment is allowed. Normally, the initial
assignment to the attribute is performed in the class constructor,
based on information passed to the constructor. If the read-only value
is known in advance of run time, use Constant instead of ReadOnly to
define the trait.
"""
# Defines the CTrait type to use for this trait:
ctrait_type = TraitKind.read_only
#: The default value for the trait:
default_value = Undefined
# Create a singleton instance as the trait:
ReadOnly = ReadOnly()
class Disallow(TraitType):
""" A trait that prevents any value from being assigned or read.
Any attempt to get or set the value of the trait attribute raises an
exception. This trait is most often used in conjunction with wildcard
naming, for example, to catch spelling mistakes in attribute names.
See the *Traits User Manual* for details on wildcards.
"""
#: Defines the CTrait type to use for this trait:
ctrait_type = TraitKind.disallow
# Create a singleton instance as the trait:
Disallow = Disallow()
class Constant(TraitType):
""" A trait type whose value is a constant.
Traits of this type are very space efficient (and fast) because
*value* is not stored in each instance using the trait, but only in
the trait object itself.
Parameters
----------
value : any
The constant value for the trait.
**metadata
Trait metadata for the trait.
"""
#: Defines the CTrait type to use for this trait:
ctrait_type = TraitKind.constant
#: The standard metadata for the trait:
metadata = {"type": "constant", "transient": True}
class Delegate(TraitType):
""" A trait type whose value is delegated to a trait on another object.
This is a base class that shouldn't be used directly, rather use one of
the subclasses DelegatesTo or PrototypesFrom, depending on desired
behaviour.
An object containing a delegator trait attribute must contain a
second attribute that references the object containing the delegate
trait attribute. The name of this second attribute is passed as the
*delegate* argument.
The following rules govern the application of the prefix parameter:
* If *prefix* is empty or omitted, the delegation is to an attribute
of the delegate object with the same name as the delegator
attribute.
* If *prefix* is a valid Python attribute name, then the delegation
is to an attribute whose name is the value of *prefix*.
* If *prefix* ends with an asterisk ('*') and is longer than one
character, then the delegation is to an attribute whose name is
the value of *prefix*, minus the trailing asterisk, prepended to
the delegator attribute name.
* If *prefix* is equal to a single asterisk, the delegation is to an
attribute whose name is the value of the delegator object's
__prefix__ attribute prepended to delegator attribute name.
Parameters
----------
delegate : str
The name of the trait that holds the HasTraits instance that the
value is delegated to.
prefix : str
The name of the trait on the delegate that holds the delegated
value. If empty, then the name of this trait will be used.
modify : bool
Whether modifications of this trait are applied to the delegated
object. This differentiates the behaviour of DelegatesTo and
PrototypedFrom.
listenable : bool
Whether changes to the delegated trait will fire listeners to
this trait.
Attributes
----------
delegate : str
The name of the trait that holds the HasTraits instance that the
value is delegated to.
prefix : str
The name of the trait on the delegate that holds the delegated
value. If empty, then the name of this trait will be used.
prefix_type : int
An integer giving the type of prefix being used.
modify : bool
Whether modifications of this trait are applied to the delegated
object. This differentiates the behaviour of DelegatesTo and
PrototypedFrom.
"""
#: Defines the CTrait type to use for this trait:
ctrait_type = TraitKind.delegate
#: The standard metadata for the trait:
metadata = {"type": "delegate", "transient": False}
def __init__(
self, delegate, prefix="", modify=False, listenable=True, **metadata
):
""" Creates a Delegate trait.
"""
if prefix == "":
prefix_type = 0
elif prefix[-1:] != "*":
prefix_type = 1
else:
prefix = prefix[:-1]
if prefix != "":
prefix_type = 2
else:
prefix_type = 3
metadata["_delegate"] = delegate
metadata["_prefix"] = prefix
metadata["_listenable"] = listenable
super(Delegate, self).__init__(**metadata)
self.delegate = delegate
self.prefix = prefix
self.prefix_type = prefix_type
self.modify = modify
def as_ctrait(self):
""" Returns a CTrait corresponding to the trait defined by this class.
"""
trait = super(Delegate, self).as_ctrait()
trait.delegate(
self.delegate, self.prefix, self.prefix_type, self.modify
)
return trait
class DelegatesTo(Delegate):
""" A trait type that matches the 'delegate' design pattern.
This defines a trait whose value and definition is "delegated" to
another trait on a different object.
An object containing a delegator trait attribute must contain a
second attribute that references the object containing the delegate
trait attribute. The name of this second attribute is passed as the
*delegate* argument to the DelegatesTo() function.
The following rules govern the application of the prefix parameter:
* If *prefix* is empty or omitted, the delegation is to an attribute
of the delegate object with the same name as the delegator
attribute.
* If *prefix* is a valid Python attribute name, then the delegation
is to an attribute whose name is the value of *prefix*.
* If *prefix* ends with an asterisk ('*') and is longer than one
character, then the delegation is to an attribute whose name is
the value of *prefix*, minus the trailing asterisk, prepended to
the delegator attribute name.
* If *prefix* is equal to a single asterisk, the delegation is to an
attribute whose name is the value of the delegator object's
__prefix__ attribute prepended to delegator attribute name.
Note that any changes to the delegator attribute are actually
applied to the corresponding attribute on the delegate object. The
original object containing the delegator trait is not modified.
Parameters
----------
delegate : str
Name of the attribute on the current object which references
the object that is the trait's delegate.
prefix : str
A prefix or substitution applied to the original attribute when
looking up the delegated attribute.
listenable : bool
Indicates whether a listener can be attached to this attribute
such that changes to the delegated attribute will trigger it.
**metadata
Trait metadata for the trait.
"""
def __init__(self, delegate, prefix="", listenable=True, **metadata):
super(DelegatesTo, self).__init__(
delegate,
prefix=prefix,
modify=True,
listenable=listenable,
**metadata
)
class PrototypedFrom(Delegate):
""" A trait type that matches the 'prototype' design pattern.
This defines a trait whose default value and definition is "prototyped"
from another trait on a different object.
An object containing a prototyped trait attribute must contain a
second attribute that references the object containing the prototype
trait attribute. The name of this second attribute is passed as the
*prototype* argument to the PrototypedFrom() function.
The following rules govern the application of the prefix parameter:
* If *prefix* is empty or omitted, the prototype delegation is to an
attribute of the prototype object with the same name as the
prototyped attribute.
* If *prefix* is a valid Python attribute name, then the prototype
delegation is to an attribute whose name is the value of *prefix*.
* If *prefix* ends with an asterisk ('*') and is longer than one
character, then the prototype delegation is to an attribute whose
name is the value of *prefix*, minus the trailing asterisk,
prepended to the prototyped attribute name.
* If *prefix* is equal to a single asterisk, the prototype
delegation is to an attribute whose name is the value of the
prototype object's __prefix__ attribute prepended to the
prototyped attribute name.
Note that any changes to the prototyped attribute are made to the
original object, not the prototype object. The prototype object is
only used to define to trait type and default value.
Parameters
----------
prototype : str
Name of the attribute on the current object which references the
object that is the trait's prototype.
prefix : str
A prefix or substitution applied to the original attribute when
looking up the prototyped attribute.
listenable : bool
Indicates whether a listener can be attached to this attribute
such that changes to the corresponding attribute on the
prototype object will trigger it.
**metadata
Trait metadata for the trait.
"""
def __init__(self, prototype, prefix="", listenable=True, **metadata):
super(PrototypedFrom, self).__init__(
prototype,
prefix=prefix,
modify=False,
listenable=listenable,
**metadata
)
class Expression(TraitType):
""" A trait type whose value must be a valid Python expression.
The compiled form of a valid expression is stored as the mapped value of
the trait.
"""
#: The default value for the trait:
default_value = "0"
#: A description of the type of value this trait accepts:
info_text = "a valid Python expression"
#: Indicate that this is a mapped trait:
is_mapped = True
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
"""
try:
return compile(value, "<string>", "eval")
except:
self.error(object, name, value)
def post_setattr(self, object, name, value):
""" Performs additional post-assignment processing.
"""
object.__dict__[name + "_"] = value
def mapped_value(self, value):
""" Returns the 'mapped' value for the specified **value**.
"""
return compile(value, "<string>", "eval")
def as_ctrait(self):
""" Returns a CTrait corresponding to the trait defined by this class.
"""
# Tell the C code that 'setattr' should store the original, unadapted
# value passed to it:
ctrait = super(Expression, self).as_ctrait()
ctrait.setattr_original_value = True
return ctrait
class PythonValue(Any):
""" A trait type whose value can be of any type.
The default editor is a ShellEditor.
"""
#: The standard metadata for the trait:
metadata = {"editor": shell_editor}
class BaseFile(BaseStr):
""" A trait type whose value must be a file path string.
For Python 3.6 and later this will accept os.pathlib Path objects,
converting them to the corresponding string value.
Parameters
----------
value : str
The default value for the trait.
filter : str
A wildcard string to filter filenames in the file dialog box used by
the attribute trait editor.
auto_set : bool
Indicates whether the file editor updates the trait value after
every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing file or
not.
Attributes
----------
filter : str
A wildcard string to filter filenames in the file dialog box used by
the attribute trait editor.
auto_set : bool
Indicates whether the file editor updates the trait value after
every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing file or
not.
"""
#: A description of the type of value this trait accepts:
info_text = "a filename or object implementing the os.PathLike interface"
def __init__(
self,
value="",
filter=None,
auto_set=False,
entries=0,
exists=False,
**metadata
):
self.filter = filter
self.auto_set = auto_set
self.entries = entries
self.exists = exists
super(BaseFile, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if fspath is not None:
# Python 3.5 does not implement __fspath__
try:
# If value is of type os.PathLike, get the path representation
# The path representation could be either a str or bytes type
# If fspath returns bytes, further validation will fail.
value = fspath(value)
except TypeError:
pass
validated_value = super(BaseFile, self).validate(object, name, value)
if not self.exists:
return validated_value
elif isfile(value):
return validated_value
self.error(object, name, value)
def create_editor(self):
from traitsui.editors.file_editor import FileEditor
editor = FileEditor(
filter=self.filter or [],
auto_set=self.auto_set,
entries=self.entries,
dialog_style="open" if self.exists else "save",
)
return editor
class File(BaseFile):
""" A fast-validating trait type whose value must be a file path string.
For Python 3.6 and later this will accept os.pathlib Path objects,
converting them to the corresponding string value.
Parameters
----------
value : str
The default value for the trait.
filter : str
A wildcard string to filter filenames in the file dialog box used by
the attribute trait editor.
auto_set : bool
Indicates whether the file editor updates the trait value after
every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing file or
not.
Attributes
----------
filter : str
A wildcard string to filter filenames in the file dialog box used by
the attribute trait editor.
auto_set : bool
Indicates whether the file editor updates the trait value after
every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing file or
not.
"""
def __init__(
self,
value="",
filter=None,
auto_set=False,
entries=0,
exists=False,
**metadata
):
super(File, self).__init__(
value, filter, auto_set, entries, exists, **metadata
)
class BaseDirectory(BaseStr):
""" A trait type whose value must be a directory path string.
For Python 3.6 and greater, it also accepts objects implementing
the :class:`os.PathLike` interface, converting them to the corresponding
string.
Parameters
----------
value : str
The default value for the trait.
auto_set : bool
Indicates whether the directory editor updates the trait value
after every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing directory or
not.
Attributes
----------
auto_set : bool
Indicates whether the directory editor updates the trait value
after every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing directory or
not.
"""
#: A description of the type of value this trait accepts:
info_text = ("a directory name or an object implementing "
"the os.PathLike interface")
def __init__(
self, value="", auto_set=False, entries=0, exists=False, **metadata
):
self.entries = entries
self.auto_set = auto_set
self.exists = exists
super(BaseDirectory, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that a specified value is valid for this trait.
Note: The 'fast validator' version performs this check in C.
"""
if fspath is not None:
# Python 3.5 does not implement __fspath__
try:
value = fspath(value)
except TypeError:
pass
validated_value = super(BaseDirectory, self).validate(
object, name, value
)
if not self.exists:
return validated_value
elif isdir(value):
return validated_value
self.error(object, name, value)
def create_editor(self):
from traitsui.editors.directory_editor import DirectoryEditor
editor = DirectoryEditor(auto_set=self.auto_set, entries=self.entries)
return editor
class Directory(BaseDirectory):
""" A fast-validating trait type whose value is a directory path string.
For Python 3.6 and greater, it also accepts objects implementing
the :class:`os.PathLike` interface, converting them to the corresponding
string.
Parameters
----------
value : str
The default value for the trait.
auto_set : bool
Indicates whether the directory editor updates the trait value
after every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing directory or
not.
Attributes
----------
auto_set : bool
Indicates whether the directory editor updates the trait value
after every key stroke.
entries : int
A hint to the TraitsUI editor about how many values to display in
the editor.
exists : bool
Indicates whether the trait value must be an existing directory or
not.
"""
def __init__(
self, value="", auto_set=False, entries=0, exists=False, **metadata
):
# Fast validation is disabled (Github issue #877).
super(Directory, self).__init__(
value, auto_set, entries, exists, **metadata
)
class BaseRange(TraitType):
""" A trait type whose numeric value lies inside a range.
The value held will be either an integer or a float, which type is
determined by whether the *low*, *high* and *value* arguments are
integers or floats.
The *low*, *high*, and *value* arguments must be of the same type
(integer or float), except in the case where either *low* or *high* is
a string (i.e. extended trait name).
If *value* is None or omitted, the default value is *low*, unless *low*
is None or omitted, in which case the default value is *high*.
Parameters
----------
low : integer, float or string (i.e. extended trait name)
The low end of the range.
high : integer, float or string (i.e. extended trait name)
The high end of the range.
value : integer, float or string (i.e. extended trait name)
The default value of the trait.
exclude_low : bool
Indicates whether the low end of the range is exclusive.
exclude_high : bool
Indicates whether the high end of the range is exclusive.
"""
def __init__(
self,
low=None,
high=None,
value=None,
exclude_low=False,
exclude_high=False,
**metadata
):
if value is None:
if low is not None:
value = low
else:
value = high
super(BaseRange, self).__init__(value, **metadata)
vtype = type(high)
if (low is not None) and (
not issubclass(vtype, (float, str))
):
vtype = type(low)
is_static = not issubclass(vtype, str)
if is_static and (vtype not in RangeTypes):
raise TraitError(
"Range can only be use for int or float "
"values, but a value of type %s was specified." % vtype
)
self._low_name = self._high_name = ""
self._vtype = Undefined
kind = None
if vtype is float:
self._validate = "float_validate"
kind = ValidateTrait.float_range
self._type_desc = "a floating point number"
if low is not None:
low = float(low)
if high is not None:
high = float(high)
elif vtype is int:
self._validate = "int_validate"
self._type_desc = "an integer"
if low is not None:
low = int(low)
if high is not None:
high = int(high)
else:
self.get, self.set, self.validate = self._get, self._set, None
self._vtype = None
self._type_desc = "a number"
if isinstance(high, str):
self._high_name = high = "object." + high
else:
self._vtype = type(high)
high = compile(str(high), "<string>", "eval")
if isinstance(low, str):
self._low_name = low = "object." + low
else:
self._vtype = type(low)
low = compile(str(low), "<string>", "eval")
if isinstance(value, str):
value = "object." + value
self._value = compile(str(value), "<string>", "eval")
self.default_value_type = DefaultValue.callable
self.default_value = self._get_default_value
exclude_mask = 0
if exclude_low:
exclude_mask |= 1
if exclude_high:
exclude_mask |= 2
if is_static and kind is not None:
self.init_fast_validate(kind, low, high, exclude_mask)
#: Assign type-corrected arguments to handler attributes:
self._low = low
self._high = high
self._exclude_low = exclude_low
self._exclude_high = exclude_high
def init_fast_validate(self, *args):
""" Does nothing for the BaseRange class. Used in the Range class to
set up the fast validator.
"""
pass
def validate(self, object, name, value):
""" Validate that the value is in the specified range.
"""
return getattr(self, self._validate)(object, name, value)
def float_validate(self, object, name, value):
""" Validate that the value is a float value in the specified range.
"""
# Convert to exact type float, re-raising a TypeError as a TraitError
# and letting other errors propagate. Keep original value for
# error-reporting purposes.
original_value = value
try:
value = _validate_float(value)
except TypeError:
self.error(object, name, original_value)
if (
(
(self._low is None)
or (self._exclude_low and (self._low < value))
or ((not self._exclude_low) and (self._low <= value))
)
and (
(self._high is None)
or (self._exclude_high and (self._high > value))
or ((not self._exclude_high) and (self._high >= value))
)
):
return value
self.error(object, name, original_value)
def int_validate(self, object, name, value):
""" Validate that the value is an int value in the specified range.
"""
# Convert to exact type float, re-raising a TypeError as a TraitError
# and letting other errors propagate. Keep original value for
# error-reporting purposes.
original_value = value
try:
value = _validate_int(value)
except TypeError:
self.error(object, name, original_value)
if (
(
(self._low is None)
or (self._exclude_low and (self._low < value))
or ((not self._exclude_low) and (self._low <= value))
)
and (
(self._high is None)
or (self._exclude_high and (self._high > value))
or ((not self._exclude_high) and (self._high >= value))
)
):
return value
self.error(object, name, original_value)
def _get_default_value(self, object):
""" Returns the default value of the range.
"""
return eval(self._value)
def _get(self, object, name, trait):
""" Returns the current value of a dynamic range trait.
"""
cname = "_traits_cache_" + name
value = object.__dict__.get(cname, Undefined)
if value is Undefined:
object.__dict__[cname] = value = eval(self._value)
low = eval(self._low)
high = eval(self._high)
if (low is not None) and (value < low):
value = low
elif (high is not None) and (value > high):
value = high
return self._typed_value(value, low, high)
def _set(self, object, name, value):
""" Sets the current value of a dynamic range trait.
"""
if not isinstance(value, str):
try:
low = eval(self._low)
high = eval(self._high)
if (low is None) and (high is None):
if isinstance(value, RangeTypes):
self._set_value(object, name, value)
return
else:
new_value = self._typed_value(value, low, high)
if (
(low is None)
or (self._exclude_low and (low < new_value))
or ((not self._exclude_low) and (low <= new_value))
) and (
(high is None)
or (self._exclude_high and (high > new_value))
or ((not self._exclude_high) and (high >= new_value))
):
self._set_value(object, name, new_value)
return
except:
pass
self.error(object, name, value)
def _typed_value(self, value, low, high):
""" Returns the specified value with the correct type for the current
dynamic range.
"""
vtype = self._vtype
if vtype is None:
if low is not None:
vtype = type(low)
elif high is not None:
vtype = type(high)
else:
vtype = lambda x: x
return vtype(value)
def _set_value(self, object, name, value):
""" Sets the specified value as the value of the dynamic range.
"""
cname = "_traits_cache_" + name
old = object.__dict__.get(cname, Undefined)
if old is Undefined:
old = eval(self._value)
object.__dict__[cname] = value
if value != old:
object.trait_property_changed(name, old, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
if self._vtype is not Undefined:
low = eval(self._low)
high = eval(self._high)
low, high = (
self._typed_value(low, low, high),
self._typed_value(high, low, high),
)
else:
low = self._low
high = self._high
if low is None:
if high is None:
return self._type_desc
return "%s <%s %s" % (
self._type_desc,
"="[self._exclude_high:],
high,
)
elif high is None:
return "%s >%s %s" % (
self._type_desc,
"="[self._exclude_low:],
low,
)
return "%s <%s %s <%s %s" % (
low,
"="[self._exclude_low:],
self._type_desc,
"="[self._exclude_high:],
high,
)
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
# fixme: Needs to support a dynamic range editor.
auto_set = self.auto_set
if auto_set is None:
auto_set = True
from traitsui.api import RangeEditor
return RangeEditor(
self,
mode=self.mode or "auto",
cols=self.cols or 3,
auto_set=auto_set,
enter_set=self.enter_set or False,
low_label=self.low or "",
high_label=self.high or "",
low_name=self._low_name,
high_name=self._high_name,
)
class Range(BaseRange):
""" A fast-validating trait type whose numeric value lies inside a range.
"""
def init_fast_validate(self, *args):
""" Set up the C-level fast validator.
"""
self.fast_validate = args
class BaseEnum(TraitType):
""" A trait type whose value is an element of a finite collection.
This trait type can be either *static*, with the collection of valid values
specified directly in the constructor, or *dynamic*, with the collection
provided by the value of another trait attribute.
For both static and dynamic enumerations, a default value can be provided
as a positional argument. If no default is provided, the default is the
first item (in iteration order) of the underlying collection.
Notes
-----
1. If the enumeration is based on an unordered collection like a
``set``, and no explicit default is given, the default used will
effectively be arbitrary (the first element of the set in iteration
order). It's recommended that a default be given explicitly in this
case.
2. Instances of ``str``, ``bytes`` and ``bytearray`` are not treated
as collections for the purposes of this trait type, both for pragmatic
reasons (it's more likely that a user wants to use a string as an
element in a collection than as a collection in its own right), and
because the behavior of the ``in`` operator for those types does not
express the usual membership semantics (for example, ``"bc" in "abc"``
is ``True``).
Parameters
----------
*args
The enumeration of all valid values for the trait. For a static
enumeration trait (where the *values* keyword argument is not given)
the supported signatures for ``args`` are as follows:
(collection,)
A nonempty collection of valid values. The default is the first
element of the collection, in iteration order.
(default, collection)
The default value, followed by a nonempty collection of valid
values. The default should be an element of the collection, but
this is not checked.
(item1, item2, ..., itemn)
One or more items giving the valid values for the collection.
The default is *item1*.
For a dynamic enumeration trait, where the *values* keyword argument
is given, the supported signatures for ``args`` are:
()
No arguments given. In this case the default is the first item
of the collection, in iteration order.
(default,)
The default value for the collection.
For the static case, the ambiguity in the signatures is resolved
as follows: if ``args`` has length ``1`` or ``2``, ``args[-1]`` can be
iterated over, and ``args[-1]`` is not an instance of ``str``,
``bytes`` or ``bytearray``, then ``args[-1]`` is assumed to give the
collection of values. Otherwise, all elements of ``args`` are assumed
to be items in the collection. Thus the first two signatures are safe
from ambiguity, and it's recommended to use one of these two signatures
in preference to the third form.
values : str, optional
The name of a trait holding the valid values. If given, this is
a dynamic enumeration, otherwise it's a static numeration.
**metadata
Metadata for the trait.
Attributes
----------
values : tuple or None
For a static enumeration, this is a tuple holding the valid values.
For a dynamic enumeration, this is None.
name : str or None
For a dynamic enumeration, this is the name of a trait holding
the collection of valid values. For a static enumeration, this is
None.
"""
def __init__(self, *args, values=None, **metadata):
self.name = values
nargs = len(args)
if self.name is not None:
# Dynamic enumeration
self.values = None
self.get, self.set, self.validate = self._get, self._set, None
if nargs == 0:
super(BaseEnum, self).__init__(**metadata)
elif nargs == 1:
default_value = args[0]
super(BaseEnum, self).__init__(default_value, **metadata)
else:
raise TraitError(
"Incorrect number of arguments specified "
"when using the 'values' keyword"
)
else:
# Static enumeration
if nargs == 0:
raise TraitError("Enum trait requires at least 1 argument")
# If we have either 1 or 2 arguments and the last argument is a
# collection, then that collection provides the values of the
# enumeration. Otherwise, args itself is the collection.
have_collection_arg = (
nargs <= 2
and not isinstance(args[-1], (str, bytes, bytearray))
and isinstance(args[-1], collections.abc.Iterable)
)
self.values = tuple(args[-1]) if have_collection_arg else args
if not self.values:
raise TraitError("Enum collection should be nonempty")
# In the two-argument collection case, the first argument is
# the default. Otherwise, we take the first element of self.values.
if have_collection_arg and nargs == 2:
default_value = args[0]
else:
default_value = self.values[0]
self.init_fast_validate(ValidateTrait.enum, self.values)
super(BaseEnum, self).__init__(default_value, **metadata)
def init_fast_validate(self, *args):
""" Does nothing for the BaseEnum class. Used in the Enum class to set
up the fast validator.
"""
pass
def validate(self, object, name, value):
""" Validates that the value is one of the enumerated set of valid
values.
"""
if value in self.values:
return value
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
if self.name is None:
values = self.values
else:
values = xgetattr(object, self.name)
return " or ".join([repr(x) for x in values])
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
from traitsui.api import EnumEditor
if self.name is None:
values = self.values
name = ""
else:
values = None
name = self.name
editor = EnumEditor(
name=name,
cols=self.cols or 3,
evaluate=self.evaluate,
format_func=self.format_func,
mode=self.mode if self.mode else "radio",
)
# Workaround enthought/traitsui#782
if values is not None:
editor.values = values
return editor
def _get(self, object, name, trait):
""" Returns the current value of a dynamic enum trait.
"""
value = self.get_value(object, name, trait)
values = xgetattr(object, self.name)
if not safe_contains(value, values):
value = next(iter(values), None)
return value
def _set(self, object, name, value):
""" Sets the current value of a dynamic range trait.
"""
if safe_contains(value, xgetattr(object, self.name)):
self.set_value(object, name, value)
else:
self.error(object, name, value)
class Enum(BaseEnum):
""" A fast-validating trait type whose value is an element of a finite
collection.
This trait type can be either *static*, with the collection of valid values
specified directly in the constructor, or *dynamic*, with the collection
provided by the value of another trait attribute.
For both static and dynamic enumerations, a default value can be provided
as a positional argument. If no default is provided, the default is the
first item (in iteration order) of the underlying collection.
Notes
-----
1. If the enumeration is based on an unordered collection like a
``set``, and no explicit default is given, the default used will
effectively be arbitrary (the first element of the set in iteration
order). It's recommended that a default be given explicitly in this
case.
2. Instances of ``str``, ``bytes`` and ``bytearray`` are not treated
as collections for the purposes of this trait type, both for pragmatic
reasons (it's more likely that a user wants to use a string as an
element in a collection than as a collection in its own right), and
because the behavior of the ``in`` operator for those types does not
express the usual membership semantics (for example, ``"bc" in "abc"``
is ``True``).
Parameters
----------
*args
The enumeration of all valid values for the trait. For a static
enumeration trait (where the *values* keyword argument is not given)
the supported signatures for ``args`` are as follows:
(collection,)
A nonempty collection of valid values. The default is the first
element of the collection, in iteration order.
(default, collection)
The default value, followed by a nonempty collection of valid
values. The default should be an element of the collection, but
this is not checked.
(item1, item2, ..., itemn)
One or more items giving the valid values for the collection.
The default is *item1*.
For a dynamic enumeration trait, where the *values* keyword argument
is given, the supported signatures for ``args`` are:
()
No arguments given. In this case the default is the first item
of the collection, in iteration order.
(default,)
The default value for the collection.
For the static case, the ambiguity in the signatures is resolved
as follows: if ``args`` has length ``1`` or ``2``, ``args[-1]`` can be
iterated over, and ``args[-1]`` is not an instance of ``str``,
``bytes`` or ``bytearray``, then ``args[-1]`` is assumed to give the
collection of values. Otherwise, all elements of ``args`` are assumed
to be items in the collection. Thus the first two signatures are safe
from ambiguity, and it's recommended to use one of these two signatures
in preference to the third form.
values : str, optional
The name of a trait holding the valid values. If given, this is
a dynamic enumeration, otherwise it's a static numeration.
**metadata
Metadata for the trait.
Attributes
----------
values : tuple or None
For a static enumeration, this is a tuple holding the valid values.
For a dynamic enumeration, this is None.
name : str or None
For a dynamic enumeration, this is the name of a trait holding
the collection of valid values. For a static enumeration, this is
None.
"""
def init_fast_validate(self, *args):
""" Set up C-level fast validation. """
self.fast_validate = args
class BaseTuple(TraitType):
""" A trait type holding a tuple with typed elements.
The default value is determined as follows:
1. If no arguments are specified, the default value is ().
2. If a tuple is specified as the first argument, it is the default
value.
3. If a tuple is not specified as the first argument, the default
value is a tuple whose length is the length of the argument list,
and whose values are the default values for the corresponding trait
types.
Example for case #2::
mytuple = Tuple(('Fred', 'Betty', 5))
The trait's value must be a 3-element tuple whose first and second
elements are strings, and whose third element is an integer. The
default value is ``('Fred', 'Betty', 5)``.
Example for case #3::
mytuple = Tuple('Fred', 'Betty', 5)
The trait's value must be a 3-element tuple whose first and second
elements are strings, and whose third element is an integer. The
default value is ``('','',0)``.
Parameters
----------
*types
Definition of the default and allowed tuples. If the first item of
*types* is a tuple, it is used as the default value.
The remaining argument list is used to form a tuple that constrains
the values assigned to the returned trait. The trait's value must
be a tuple of the same length as the remaining argument list, whose
elements must match the types specified by the corresponding items
of the remaining argument list.
**metadata
Trait metadata for the trait.
Attributes
----------
types : tuple
The tuple of traits specifying the type of each element in order.
no_type_check : bool
Flag to indicate whether validation should check the type of each
element.
"""
def __init__(self, *types, **metadata):
if len(types) == 0:
self.init_fast_validate(ValidateTrait.coerce, tuple, None, list)
super(BaseTuple, self).__init__((), **metadata)
return
default_value = None
if isinstance(types[0], tuple):
default_value, types = types[0], types[1:]
if len(types) == 0:
types = [Trait(element) for element in default_value]
self.types = tuple([trait_from(type) for type in types])
self.init_fast_validate(ValidateTrait.tuple, self.types)
if default_value is None:
default_value = tuple(
[type.default_value()[1] for type in self.types]
)
super(BaseTuple, self).__init__(default_value, **metadata)
def init_fast_validate(self, *args):
""" Saves the validation parameters.
"""
self.no_type_check = args[0] == ValidateTrait.coerce
def validate(self, object, name, value):
""" Validates that the value is a valid tuple.
"""
if self.no_type_check:
if isinstance(value, tuple):
return value
if isinstance(value, list):
return tuple(value)
self.error(object, name, value)
try:
if isinstance(value, list):
value = tuple(value)
if isinstance(value, tuple):
types = self.types
if len(value) == len(types):
values = []
for i, type in enumerate(types):
values.append(type.validate(object, name, value[i]))
return tuple(values)
except:
pass
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
if self.no_type_check:
return "a tuple"
return "a tuple of the form: (%s)" % (
", ".join(
[type.full_info(object, name, value) for type in self.types]
)
)
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
from traitsui.api import TupleEditor
auto_set = self.auto_set
if auto_set is None:
auto_set = True
enter_set = self.enter_set or False
return TupleEditor(
types=self.types,
labels=self.labels or [],
cols=self.cols or 1,
auto_set=auto_set,
enter_set=enter_set,
)
class Tuple(BaseTuple):
""" A fast-validating trait type holding a tuple with typed elements.
"""
def init_fast_validate(self, *args):
""" Set up the C-level fast validator.
"""
super(Tuple, self).init_fast_validate(*args)
self.fast_validate = args
class ValidatedTuple(BaseTuple):
""" A trait type holding a tuple with customized validation.
Parameters
----------
*types
Definition of the default and allowed tuples. (see
:class:`~.BaseTuple` for more details)
fvalidate : callable, optional
A callable to provide the additional custom validation for the
tuple. The callable will be passed the tuple value and should
return True or False.
fvalidate_info : string, optional
A string describing the custom validation to use for the error
messages.
**metadata
Trait metadata for the trait.
Example
-------
The definition::
value_range = ValidatedTuple(
Int(0), Int(1), fvalidate=lambda x: x[0] < x[1])
will accept only tuples ``(a, b)`` containing two integers that
satisfy ``a < b``.
"""
def __init__(self, *types, **metadata):
metadata.setdefault("fvalidate", None)
metadata.setdefault("fvalidate_info", "")
super(ValidatedTuple, self).__init__(*types, **metadata)
def validate(self, object, name, value):
""" Validates that the value is a valid tuple.
"""
values = super(ValidatedTuple, self).validate(object, name, value)
# Exceptions in the fvalidate function will not result in a TraitError
# but will be allowed to propagate up the frame stacks.
if self.fvalidate is None or self.fvalidate(values):
return values
else:
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
message = "a tuple of the form: ({0}) that passes custom validation{1}"
types_info = ", ".join(
[type_.full_info(object, name, value) for type_ in self.types]
)
if self.fvalidate_info is not None:
fvalidate_info = ": {0}".format(self.fvalidate_info)
else:
fvalidate_info = ""
return message.format(types_info, fvalidate_info)
class List(TraitType):
""" A trait type for a list of values of the specified type.
The length of the list assigned to the trait must be such that::
minlen <= len(list) <= maxlen
Parameters
----------
trait : a trait or value that can be converted using trait_from()
The type of item that the list contains. If not specified, the list
can contain items of any type.
value : list
Default value for the list.
minlen : integer
The minimum length of a list that can be assigned to the trait.
maxlen : integer
The maximum length of a list that can be assigned to the trait.
items : bool
Whether there is a corresponding `<name>_items` trait.
**metadata
Trait metadata for the trait.
Attributes
----------
item_trait : trait
The type of item that the list contains.
minlen : integer
The minimum length of a list that can be assigned to the trait.
maxlen : integer
The maximum length of a list that can be assigned to the trait.
has_items : bool
Whether there is a corresponding `<name>_items` trait.
"""
info_trait = None
default_value_type = DefaultValue.trait_list_object
_items_event = None
def __init__(
self,
trait=None,
value=None,
minlen=0,
maxlen=sys.maxsize,
items=True,
**metadata
):
metadata.setdefault("copy", "deep")
if isinstance(trait, SequenceTypes):
trait, value = value, list(trait)
if value is None:
value = []
self.item_trait = trait_from(trait)
self.minlen = max(0, minlen)
self.maxlen = max(minlen, maxlen)
self.has_items = items
if self.item_trait.instance_handler == "_instance_changed_handler":
metadata.setdefault("instance_handler", "_list_changed_handler")
super(List, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that the values is a valid list.
.. note::
`object` can be None when validating a default value (see e.g.
:meth:`~traits.trait_handlers.TraitType.clone`)
"""
if isinstance(value, list) and (
self.minlen <= len(value) <= self.maxlen
):
if object is None:
return value
return TraitListObject(self, object, name, value)
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
if self.minlen == 0:
if self.maxlen == sys.maxsize:
size = "items"
else:
size = "at most %d items" % self.maxlen
else:
if self.maxlen == sys.maxsize:
size = "at least %d items" % self.minlen
else:
size = "from %s to %s items" % (self.minlen, self.maxlen)
return "a list of %s which are %s" % (
size,
self.item_trait.full_info(object, name, value),
)
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
return list_editor(self, self)
def inner_traits(self):
""" Returns the *inner trait* (or traits) for this trait.
"""
return (self.item_trait,)
# -- Private Methods ------------------------------------------------------
def items_event(self):
cls = self.__class__
if cls._items_event is None:
cls._items_event = Event(
TraitListEvent, is_base=False
).as_ctrait()
return cls._items_event
class CList(List):
""" A coercing trait type for a list of values of the specified type.
"""
def validate(self, object, name, value):
""" Validates that the values is a valid list.
"""
if not isinstance(value, list):
try:
# Should work for all iterables as well as strings (which do
# not define an __iter__ method)
value = list(value)
except (ValueError, TypeError):
value = [value]
return super(CList, self).validate(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
return "%s or %s" % (
self.item_trait.full_info(object, name, value),
super(CList, self).full_info(object, name, value),
)
class PrefixList(TraitType):
r"""Ensures that a value assigned to the attribute is a member of a list of
specified string values, or is a unique prefix of one of those values.
The values that can be assigned to a trait attribute of type PrefixList
type is the set of all strings supplied to the PrefixList constructor,
as well as any unique prefix of those strings. That is, if the set of
strings supplied to the constructor is described by
[*s*\ :sub:`1`\ , *s*\ :sub:`2`\ , ..., *s*\ :sub:`n`\ ], then the
string *v* is a valid value for the trait if *v* == *s*\ :sub:`i[:j]`
for one and only one pair of values (i, j). If *v* is a valid value,
then the actual value assigned to the trait attribute is the
corresponding *s*\ :sub:`i` value that *v* matched.
The legal values can be provided as an iterable of values.
Example
-------
::
class Person(HasTraits):
married = PrefixList(['yes', 'no'])
The Person class has a **married** trait that accepts any of the
strings 'y', 'ye', 'yes', 'n', or 'no' as valid values. However, the
actual values assigned as the value of the trait attribute are limited
to either 'yes' or 'no'. That is, if the value 'y' is assigned to the
**married** attribute, the actual value assigned will be 'yes'.
Note that the algorithm used by PrefixList in determining whether
a string is a valid value is fairly efficient in terms of both time and
space, and is not based on a brute force set of comparisons.
Parameters
----------
values
A single iterable of legal string values.
Attributes
----------
values : tuple of strings
Enumeration of all legal values for a trait.
"""
#: The default value for the trait:
default_value = None
#: The default value type to use (i.e. 'constant'):
default_value_type = DefaultValue.constant
def __init__(self, values, **metadata):
if isinstance(values, (str, bytes, bytearray)):
raise TypeError(
"Legal values should be provided via an iterable of strings, "
"got {!r}.".format(values)
)
self.values = list(values)
self.values_ = values_ = {}
for key in values:
values_[key] = key
default = self.default_value
if 'default_value' in metadata:
default = metadata.pop('default_value')
default = self.value_for(default)
elif self.values:
default = self.values[0]
super().__init__(default, **metadata)
def value_for(self, value):
if not isinstance(value, str):
raise TraitError(
"The value of a {} trait must be {}, but a value of {!r} {!r} "
"was specified.".format(
self.__class__.__name__, self.info(), value, type(value))
)
if value in self.values_:
return self.values_[value]
matches = [key for key in self.values if key.startswith(value)]
if len(matches) == 1:
self.values_[value] = match = matches[0]
return match
raise TraitError(
"The value of a {} trait must be {}, but a value of {!r} {!r} was "
"specified.".format(
self.__class__.__name__, self.info(), value, type(value))
)
def info(self):
return (
" or ".join([repr(x) for x in self.values])
+ " (or any unique prefix)"
)
class Set(TraitType):
""" A trait type for a set of values of the specified type.
Parameters
----------
trait : a trait or value that can be converted to a trait using Trait()
The type of item that the list contains. If not specified, the list
can contain items of any type.
value : set
Default value for the set.
items : bool
Whether there is a corresponding `<name>_items` trait.
**metadata
Trait metadata for the trait.
Attributes
----------
item_trait : a trait or value that can be converted to a trait
The type of item that the list contains. If not specified, the list
can contain items of any type.
has_items : bool
Whether there is a corresponding `<name>_items` trait.
"""
info_trait = None
default_value_type = DefaultValue.trait_set_object
_items_event = None
def __init__(self, trait=None, value=None, items=True, **metadata):
metadata.setdefault("copy", "deep")
if isinstance(trait, SetTypes):
trait, value = value, set(trait)
if value is None:
value = set()
self.item_trait = trait_from(trait)
self.has_items = items
super(Set, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that the values is a valid set.
.. note::
`object` can be None when validating a default value (see e.g.
:meth:`~traits.trait_handlers.TraitType.clone`)
"""
if isinstance(value, set):
if object is None:
return value
return TraitSetObject(self, object, name, value)
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
return "a set of %s" % self.item_trait.full_info(object, name, value)
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
from traitsui.api import TextEditor
return TextEditor(evaluate=eval)
def inner_traits(self):
""" Returns the *inner trait* (or traits) for this trait.
"""
return (self.item_trait,)
# -- Private Methods ------------------------------------------------------
def items_event(self):
if self.__class__._items_event is None:
self.__class__._items_event = Event(
TraitSetEvent, is_base=False
).as_ctrait()
return self.__class__._items_event
class CSet(Set):
""" A coercing trait type for a set of values of the specified type.
"""
def validate(self, object, name, value):
""" Validates that the values is a valid list.
"""
if not isinstance(value, set):
try:
# Should work for all iterables as well as strings (which do
# not define an __iter__ method)
value = set(value)
except (ValueError, TypeError):
value = set([value])
return super(CSet, self).validate(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
return "%s or %s" % (
self.item_trait.full_info(object, name, value),
super(CSet, self).full_info(object, name, value),
)
class Dict(TraitType):
""" A trait type for a dictionary with specified key and value types.
Parameters
----------
key_trait : a trait or value that can be converted using trait_from()
The trait type for keys in the dictionary; if not specified, any
values can be used as keys.
value_trait : a trait or value that can be converted using trait_from()
The trait type for values in the dictionary; if not specified, any
values can be used as dictionary values.
value : dict
The default value for the returned trait.
items : bool
Indicates whether the value contains items.
Attributes
----------
key_trait : a trait
The trait type for keys in the dictionary; if not specified, any
values can be used as keys.
value_trait : a trait
The trait type for values in the dictionary; if not specified, any
values can be used as dictionary values.
value_trait_handler : TraitHandler
The TraitHandler for the value_trait.
has_items : bool
Indicates whether the value contains items.
"""
info_trait = None
default_value_type = DefaultValue.trait_dict_object
_items_event = None
def __init__(
self,
key_trait=None,
value_trait=None,
value=None,
items=True,
**metadata
):
if isinstance(key_trait, dict):
key_trait, value_trait, value = value_trait, value, key_trait
if value is None:
value = {}
self.key_trait = trait_from(key_trait)
self.value_trait = trait_from(value_trait)
self.has_items = items
handler = self.value_trait.handler
if (handler is not None) and handler.has_items:
handler = handler.clone()
handler.has_items = False
self.value_handler = handler
super(Dict, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that the value is a valid dictionary.
Note
----
`object` can be None when validating a default value (see e.g.
:meth:`~traits.trait_handlers.TraitType.clone`)
"""
if isinstance(value, dict):
if object is None:
return value
return TraitDictObject(self, object, name, value)
self.error(object, name, value)
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
return (
"a dictionary with keys which are %s and with values which "
"are %s"
) % (
self.key_trait.full_info(object, name, value),
self.value_trait.full_info(object, name, value),
)
def create_editor(self):
""" Returns the default UI editor for the trait.
"""
from traitsui.api import TextEditor
return TextEditor(evaluate=eval)
def inner_traits(self):
""" Returns the *inner trait* (or traits) for this trait.
"""
return (self.key_trait, self.value_trait)
# -- Private Methods ------------------------------------------------------
def items_event(self):
cls = self.__class__
if cls._items_event is None:
cls._items_event = Event(TraitDictEvent, is_base=False).as_ctrait()
return cls._items_event
#: Allowed values and mappings for the 'adapt' keyword.
#:
#: - 'no': Adaptation is not allowed.
#: - 'yes': Adaptation is allowed. If adaptation fails, an
#: exception should be raised.
#: - 'default': Adaptation is allowed. If adaptation fails, the
#: default value for the trait should be used.
AdaptMap = {"no": 0, "yes": 1, "default": 2}
class Map(TraitType):
""" Checks that the value assigned to a trait attribute is a key of a
specified dictionary, and also assigns the dictionary value
corresponding to that key to a *shadow* attribute.
A trait attribute of type Map is called a *mapped* trait
attribute. In practice, this means that the resulting object actually
contains two attributes: one whose value is a key of the Map
dictionary, and the other whose value is the corresponding value of the
Map dictionary. The name of the shadow attribute is simply the base
attribute name with an underscore ('_') appended. Mapped trait
attributes can be used to allow a variety of user-friendly input values
to be mapped to a set of internal, program-friendly values.
Example
-------
The following example defines a ``Person`` class::
>>> class Person(HasTraits):
... married = Map({'yes': 1, 'no': 0 }, default_value="yes")
...
>>> bob = Person()
>>> print(bob.married)
yes
>>> print(bob.married_)
1
In this example, the default value of the ``married`` attribute of the
Person class is 'yes'. Because this attribute is defined using
Map, instances of Person have another attribute,
``married_``, whose default value is 1, the dictionary value
corresponding to the key 'yes'.
Parameters
----------
map : dict
A dictionary whose keys are valid values for the trait attribute,
and whose corresponding values are the values for the shadow
trait attribute.
default_value : object, optional
The default value for the trait. If given, this should be a key
from the mapping. If not given, the first key from the mapping (in
normal dictionary iteration order) will be used as the default.
Attributes
----------
map : dict
A dictionary whose keys are valid values for the trait attribute,
and whose corresponding values are the values for the shadow
trait attribute.
"""
is_mapped = True
def __init__(self, map, **metadata):
self.map = map
self.fast_validate = (ValidateTrait.map, map)
try:
default_value = metadata.pop("default_value")
except KeyError:
default_value = next(iter(self.map))
super().__init__(default_value, **metadata)
def validate(self, object, name, value):
try:
if value in self.map:
return value
except TypeError:
pass
self.error(object, name, value)
def mapped_value(self, value):
""" Get the mapped value for a value. """
return self.map[value]
def post_setattr(self, object, name, value):
setattr(object, name + "_", self.mapped_value(value))
def info(self):
keys = sorted(repr(x) for x in self.map.keys())
return " or ".join(keys)
def get_editor(self, trait):
from traitsui.api import EnumEditor
return EnumEditor(values=self, cols=trait.cols or 3)
class PrefixMap(TraitType):
""" A cross between the PrefixList and Map classes.
Like Map, PrefixMap is created using a dictionary, but in this
case, the keys of the dictionary must be strings. Like PrefixList,
a string *v* is a valid value for the trait attribute if it is a prefix of
one and only one key *k* in the dictionary. The actual values assigned to
the trait attribute is *k*, and its corresponding mapped attribute is
*map*[*k*].
Example
-------
::
mapping = {'true': 1, 'yes': 1, 'false': 0, 'no': 0 }
boolean_map = PrefixMap(mapping)
This example defines a Boolean trait that accepts any prefix of 'true',
'yes', 'false', or 'no', and maps them to 1 or 0.
Parameters
----------
map : dict
A dictionary whose keys are strings that are valid values for the
trait attribute, and whose corresponding values are the values for
the shadow trait attribute.
default_value : object, optional
The default value for the trait. If given, this should be either a key
from the mapping or a unique prefix of a key from the mapping. If not
given, the first key from the mapping (in normal dictionary iteration
order) will be used as the default.
Attributes
----------
map : dict
A dictionary whose keys are strings that are valid values for the
trait attribute, and whose corresponding values are the values for
the shadow trait attribute.
"""
is_mapped = True
def __init__(self, map, **metadata):
self.map = map
self._map = {}
for key in map.keys():
self._map[key] = key
try:
default_value = metadata.pop("default_value")
except KeyError:
default_value = next(iter(self.map))
else:
default_value = self.value_for(default_value)
super().__init__(default_value, **metadata)
def value_for(self, value):
if not isinstance(value, str):
raise TraitError(
"Value must be {}, but a value {!r} was specified.".format(
self.info(), value)
)
if value in self._map:
return self._map[value]
matches = [key for key in self.map if key.startswith(value)]
if len(matches) == 1:
self._map[value] = match = matches[0]
return match
raise TraitError(
"Value must be {}, but a value {!r} was specified.".format(
self.info(), value)
)
def mapped_value(self, value):
""" Get the mapped value for a value. """
return self.map[value]
def post_setattr(self, object, name, value):
setattr(object, name + "_", self.mapped_value(value))
def info(self):
keys = sorted(repr(x) for x in self.map.keys())
return " or ".join(keys) + " (or any unique prefix)"
def get_editor(self, trait):
from traitsui.api import EnumEditor
return EnumEditor(values=self, cols=trait.cols or 3)
class BaseClass(TraitType):
""" A base trait type for trait types which have an associated class.
Traits sometimes need to be able to access classes which have not
yet been defined, or which are from a module that we want to defer
importing from. To support this, classes can be determined
dynamically by specifying a string name for the class (e.g.
``'package1.package2.module.class'``). This base class provides the
machinery for this sort of deferred access to classes.
Any subclass must define instances with 'klass' and 'module' attributes
that contain the string name of the class (or actual class object) and
the module name that contained the original trait definition (used for
resolving local class names (e.g. 'LocalClass')).
This is an abstract class that only provides helper methods used to
resolve the class name into an actual class object.
Attributes
----------
klass : type or str
The class object or a string that refers to it.
module : str
The name of the module that contains the class.
"""
def resolve_class(self, object, name, value):
""" Resolve the class object as part of validation.
This is called when the ``klass`` attribute is a string and sets the
``klass`` attribute to the actual klass object as a side-effect. If
the class cannot be resolved, it will call validate_failed().
"""
klass = self.validate_class(self.find_class(self.klass))
if klass is None:
self.validate_failed(object, name, value)
self.klass = klass
def validate_class(self, klass):
""" Validate a class object. """
return klass
def find_class(self, klass):
""" Given a string describing a class, get the class object.
"""
module = self.module
col = klass.rfind(".")
if col >= 0:
module = klass[:col]
klass = klass[col + 1:]
theClass = getattr(sys.modules.get(module), klass, None)
if (theClass is None) and (col >= 0):
try:
mod = import_module(module)
theClass = getattr(mod, klass, None)
except Exception:
pass
return theClass
def validate_failed(self, object, name, value):
""" Raise a TraitError if the class could not be resolved. """
self.error(object, name, value)
class BaseInstance(BaseClass):
""" A trait type whose value is an instance of a class or its subclasses.
The default value is **None** if *klass* is an instance or if it is a
class and *args* and *kw* are not specified. Otherwise, the default value
is the instance obtained by calling ``klass(*args, **kw)``. Note that the
constructor call is performed each time a default value is assigned, so
each default value assigned is a unique instance.
Parameters
----------
klass : class, str or instance
The object that forms the basis for the trait; if it is an
instance, then trait values must be instances of the same class or
a subclass. This object is not the default value, even if it is an
instance. If the provided value is a string, it is expected to be
a reference to a class that will be resolved at run-time.
factory : callable
A callable, typically a class, that when called with *args* and
*kw*, returns the default value for the trait. If not specified,
or *None*, *klass* is used as the factory.
args : tuple
Positional arguments for generating the default value.
kw : dictionary
Keyword arguments for generating the default value.
allow_none : bool
Indicates whether None is allowed as a value.
adapt : str
A string specifying how adaptation should be applied. The possible
values are:
- 'no': Adaptation is not allowed.
- 'yes': Adaptation is allowed. If adaptation fails, an
exception should be raised.
- 'default': Adaptation is allowed. If adaptation fails, the
default value for the trait should be used.
Attributes
----------
factory : callable
A callable, typically a class, that when called with *args* and
*kw*, returns the default value for the trait. If not specified,
or *None*, *klass* is used as the factory.
args : tuple
Positional arguments for generating the default value.
kw : dictionary
Keyword arguments for generating the default value.
allow_none : bool
Indicates whether None is allowed as a value.
adapt : str
A string specifying how adaptation should be applied. The possible
values are:
- 'no': Adaptation is not allowed.
- 'yes': Adaptation is allowed. If adaptation fails, an
exception should be raised.
- 'default': Adaptation is allowed. If adaptation fails, the
default value for the trait should be used.
"""
#: Default adaptation behavior.
adapt_default = "no"
def __init__(
self,
klass=None,
factory=None,
args=None,
kw=None,
allow_none=True,
adapt=None,
module=None,
**metadata
):
if klass is None:
raise TraitError(
"A %s trait must have a class specified."
% self.__class__.__name__
)
metadata.setdefault("copy", "deep")
metadata.setdefault("instance_handler", "_instance_changed_handler")
adapt = adapt or self.adapt_default
if adapt not in AdaptMap:
raise TraitError("'adapt' must be 'yes', 'no' or 'default'.")
if isinstance(factory, tuple):
if args is None:
args, factory = factory, klass
elif isinstance(args, dict):
factory, args, kw = klass, factory, args
elif (kw is None) and isinstance(factory, dict):
kw, factory = factory, klass
elif ((args is not None) or (kw is not None)) and (factory is None):
factory = klass
self._allow_none = allow_none
self.adapt = AdaptMap[adapt]
self.module = module or get_module_name()
if isinstance(klass, str):
self.klass = klass
else:
if not isinstance(klass, type):
klass = klass.__class__
self.klass = klass
self.init_fast_validate()
value = factory
if factory is not None:
if args is None:
args = ()
if kw is None:
if isinstance(args, dict):
kw = args
args = ()
else:
kw = {}
elif not isinstance(kw, dict):
raise TraitError("The 'kw' argument must be a dictionary.")
if (not callable(factory)) and (
not isinstance(factory, str)
):
if (len(args) > 0) or (len(kw) > 0):
raise TraitError("'factory' must be callable")
else:
value = _InstanceArgs(factory, args, kw)
self.default_value = value
super(BaseInstance, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that the value is a valid object instance.
"""
from traits.adaptation.api import adapt
if value is None:
if self._allow_none:
return value
self.validate_failed(object, name, value)
if isinstance(self.klass, str):
self.resolve_class(object, name, value)
# Adaptation mode 0: do a simple isinstance check.
if self.adapt == 0:
if isinstance(value, self.klass):
return value
else:
self.validate_failed(object, name, value)
# Try adaptation; return adapted value on success.
result = adapt(value, self.klass, None)
if result is not None:
return result
# Adaptation failed. Move on to an isinstance check.
if isinstance(value, self.klass):
return value
# Adaptation and isinstance both failed. In mode 1, fail.
# Otherwise, return the default.
if self.adapt == 1:
self.validate_failed(object, name, value)
else:
result = self.default_value
if isinstance(result, _InstanceArgs):
return result[0](*result[1], **result[2])
else:
return result
def info(self):
""" Returns a description of the trait.
"""
klass = self.klass
if not isinstance(klass, str):
klass = klass.__name__
if self.adapt == 0:
result = class_of(klass)
else:
result = (
"an implementor of, or can be adapted to implement, %s" % klass
)
if self._allow_none:
return result + " or None"
return result
def get_default_value(self):
""" Returns a tuple of the form: ( default_value_type, default_value )
which describes the default value for this trait.
"""
dv = self.default_value
dvt = self.default_value_type
if dvt < 0:
if not isinstance(dv, _InstanceArgs):
return super(BaseInstance, self).get_default_value()
self.default_value_type = dvt = DefaultValue.callable_and_args
self.default_value = dv = (
self.create_default_value,
dv.args,
dv.kw,
)
return (dvt, dv)
def create_editor(self):
""" Returns the default traits UI editor for this type of trait.
"""
from traitsui.api import InstanceEditor
return InstanceEditor(
label=self.label or "",
view=self.view or "",
kind=self.kind or "live",
)
# -- Private Methods ------------------------------------------------------
def create_default_value(self, *args, **kw):
klass = args[0]
if isinstance(klass, str):
klass = self.validate_class(self.find_class(klass))
if klass is None:
raise TraitError("Unable to locate class: " + args[0])
return klass(*args[1:], **kw)
#: fixme: Do we still need this method using the new style?...
def allow_none(self):
self._allow_none = True
self.init_fast_validate()
def init_fast_validate(self):
""" Does nothing for the BaseInstance' class. Used by the 'Instance',
'Supports' and 'AdaptsTo' classes to set up the C-level fast
validator.
"""
pass
def resolve_class(self, object, name, value):
super(BaseInstance, self).resolve_class(object, name, value)
# fixme: The following is quite ugly, because it wants to try and fix
# the trait referencing this handler to use the 'fast path' now that
# the actual class has been resolved. The problem is finding the trait,
# especially in the case of List(Instance('foo')), where the
# object.base_trait(...) value is the List trait, not the Instance
# trait, so we need to check for this and pull out the List
# 'item_trait'. Obviously this does not extend well to other traits
# containing nested trait references (Dict?)...
self.init_fast_validate()
trait = object.base_trait(name)
handler = trait.handler
if handler is not self:
set_validate = getattr(handler, "set_validate", None)
if set_validate is not None:
# The outer trait is a TraitCompound. Recompute its
# fast_validate table now that we have updated ours.
# FIXME: there are probably still issues if the TraitCompound
# is further nested.
set_validate()
else:
item_trait = getattr(handler, "item_trait", None)
if item_trait is not None and item_trait.handler is self:
# The outer trait is a List trait.
trait = item_trait
handler = self
else:
return
if handler.fast_validate is not None:
trait.set_validate(handler.fast_validate)
class Instance(BaseInstance):
""" A fast-validated trait type whose value is an instance of a class.
"""
def init_fast_validate(self):
""" Sets up the C-level fast validator. """
if self.adapt == 0:
fast_validate = [ValidateTrait.instance, self.klass]
if self._allow_none:
fast_validate = [ValidateTrait.instance, None, self.klass]
else:
fast_validate = [ValidateTrait.instance, self.klass]
if self.klass in TypeTypes:
fast_validate[0] = ValidateTrait.type
self.fast_validate = tuple(fast_validate)
else:
self.fast_validate = (
ValidateTrait.adapt, self.klass, self.adapt, self._allow_none)
class Supports(Instance):
""" A trait type whose value is adapted to a specified protocol.
In other words, the value of the trait directly provide, or can be adapted
to, the given protocol (Interface or type).
The value of the trait after assignment is the possibly adapted value
(i.e., it is the original assigned value if that provides the protocol,
or is an adapter otherwise).
The original, unadapted value is stored in a "shadow" attribute with
the same name followed by an underscore (e.g., ``foo`` and ``foo_``).
"""
adapt_default = "yes"
def post_setattr(self, object, name, value):
""" Performs additional post-assignment processing.
"""
# Save the original, unadapted value in the mapped trait:
object.__dict__[name + "_"] = value
def as_ctrait(self):
""" Returns a CTrait corresponding to the trait defined by this class.
"""
return self.modify_ctrait(super(Supports, self).as_ctrait())
def modify_ctrait(self, ctrait):
# Tell the C code that the 'post_setattr' method wants the original,
# unadapted value passed to 'setattr':
ctrait.post_setattr_original_value = True
return ctrait
class AdaptsTo(Supports):
""" A trait type whose value must support a specified protocol.
In other words, the value of the trait directly provide, or can be adapted
to, the given protocol (Interface or type).
The value of the trait after assignment is the original, unadapted value.
A possibly adapted value is stored in a "shadow" attribute with
the same name followed by an underscore (e.g., ``foo`` and ``foo_``).
"""
def modify_ctrait(self, ctrait):
# Tell the C code that 'setattr' should store the original, unadapted
# value passed to it:
ctrait.setattr_original_value = True
return ctrait
class Type(BaseClass):
""" A trait type whose value must be a subclass of a specified class.
Parameters
----------
value : class or None
The default value of the trait.
klass : class, str or None
The class that trait values must be subclasses of. If None, then
the default value is used instead. If both are None, then the
``object`` type is used. If it is a string, the first time that
the validate method is called, the class will be imported and
the value replaced with the class object.
allow_none : bool
Indicates whether None is allowed as an assignable value. Even if
**False**, the default *value* may be **None**.
**metadata
Trait metadata for the trait.
Attributes
----------
klass : class or str
The class that trait values must be subclasses of. If this is a
string, the first time that the validate method is called, the
class will be imported and the value replaced with the class object.
module : str
The name of the module where local class names (ie. class names
with no module components) are presumed to be importable from.
This is the caller's caller's module, as determined by the
``get_module_method``.
"""
def __init__(self, value=None, klass=None, allow_none=True, **metadata):
if value is None:
if klass is None:
klass = object
elif klass is None:
klass = value
if isinstance(klass, str):
self.validate = self.resolve
elif not isinstance(klass, type):
raise TraitError("A Type trait must specify a class.")
self.klass = klass
self._allow_none = allow_none
self.module = get_module_name()
super(Type, self).__init__(value, **metadata)
def validate(self, object, name, value):
""" Validates that the value is a valid object instance.
"""
try:
if issubclass(value, self.klass):
return value
except:
if (value is None) and (self._allow_none):
return value
self.error(object, name, value)
def resolve(self, object, name, value):
""" Resolves a class originally specified as a string into an actual
class, then resets the trait so that future calls will be handled
by the normal validate method.
"""
if isinstance(self.klass, str):
self.resolve_class(object, name, value)
del self.validate
return self.validate(object, name, value)
def info(self):
""" Returns a description of the trait.
"""
klass = self.klass
if not isinstance(klass, str):
klass = klass.__name__
result = "a subclass of " + klass
if self._allow_none:
return result + " or None"
return result
def get_default_value(self):
""" Returns a tuple of the form: ( default_value_type, default_value )
which describes the default value for this trait.
"""
if not isinstance(self.default_value, str):
return super(Type, self).get_default_value()
return (
DefaultValue.callable_and_args,
(self.resolve_default_value, (), None),
)
def resolve_default_value(self):
""" Resolves a class name into a class so that it can be used to
return the class as the default value of the trait.
"""
if isinstance(self.klass, str):
try:
self.resolve_class(None, None, None)
del self.validate
except:
raise TraitError(
"Could not resolve %s into a valid class" % self.klass
)
return self.klass
#: An alias for the Type trait
Subclass = Type
class Event(TraitType):
""" A trait type that holds no value but can be set and listened to.
Event traits are write-only traits. They do not hold any value, but
they can be assigned to, and listeners to the trait will be notified
of the assignment. Since no value is held, trait change functions that
ask for the ``old`` value of the trait will be given the Undefined
special value.
Event traits can be given an optional trait type that is used to validate
values assigned to the trait. If the assigned value does not validate,
then a TraitError will occur.
Parameters
----------
trait : a trait
The type of value that can be assigned to the event.
"""
def __init__(self, trait=None, **metadata):
metadata["type"] = "event"
metadata["transient"] = True
super(Event, self).__init__(**metadata)
self.trait = None
if trait is not None:
self.trait = trait_from(trait)
validate = self.trait.get_validate()
if validate is not None:
self.fast_validate = validate
def full_info(self, object, name, value):
""" Returns a description of the trait.
"""
trait = self.trait
if trait is None:
return "any value"
return trait.full_info(object, name, value)
class Button(Event):
""" An Event trait type whose UI editor is a button.
Parameters
----------
label : str
The label for the button.
image : pyface.ImageResource
An image to display on the button.
style : 'button', 'radio', 'toolbar' or 'checkbox'
The style of button to display.
values_trait : str
For a "button" or "toolbar" style, the name of an enum
trait whose values will populate a drop-down menu on the button.
The selected value will replace the label on the button.
orientation : 'horizontal' or 'vertical'
The orientation of the label relative to the image.
width_padding : integer between 0 and 31
Extra padding (in pixels) added to the left and right sides of
the button.
height_padding : integer between 0 and 31
Extra padding (in pixels) added to the top and bottom of the
button.
view : traitsui View, optional
An optional View to display when the button is clicked.
**metadata
Trait metadata for the trait.
Attributes
----------
label : str
The label for the button.
image : pyface.ImageResource
An image to display on the button.
style : 'button', 'radio', 'toolbar' or 'checkbox'
The style of button to display.
values_trait : str
For a "button" or "toolbar" style, the name of an enum
trait whose values will populate a drop-down menu on the button.
The selected value will replace the label on the button.
orientation : 'horizontal' or 'vertical'
The orientation of the label relative to the image.
width_padding : integer between 0 and 31
Extra padding (in pixels) added to the left and right sides of
the button.
height_padding : integer between 0 and 31
Extra padding (in pixels) added to the top and bottom of the
button.
view : traitsui View, optional
An optional View to display when the button is clicked.
"""
def __init__(
self,
label="",
image=None,
values_trait=None,
style="button",
orientation="vertical",
width_padding=7,
height_padding=5,
view=None,
**metadata
):
self.label = label
self.values_trait = values_trait
self.image = image
self.style = style
self.orientation = orientation
self.width_padding = width_padding
self.height_padding = height_padding
self.view = view
super(Button, self).__init__(**metadata)
def create_editor(self):
from traitsui.api import ButtonEditor
editor = ButtonEditor(
label=self.label,
values_trait=self.values_trait,
image=self.image,
style=self.style,
orientation=self.orientation,
width_padding=self.width_padding,
height_padding=self.height_padding,
view=self.view,
)
return editor
class ToolbarButton(Button):
""" A Button trait type whose UI editor is a toolbar button.
This is just a Button trait with different defaults to style it like
a toolbar button.
Parameters
----------
label : str
The label for the button.
image : pyface.ImageResource
An image to display on the button.
style : 'button', 'radio', 'toolbar' or 'checkbox'
The style of button to display.
orientation : 'horizontal' or 'vertical'
The orientation of the label relative to the image.
width_padding : integer between 0 and 31
Extra padding (in pixels) added to the left and right sides of
the button.
height_padding : integer between 0 and 31
Extra padding (in pixels) added to the top and bottom of the
button.
**metadata
Trait metadata for the trait.
Attributes
----------
label : str
The label for the button.
image : pyface.ImageResource
An image to display on the button.
style : 'button', 'radio', 'toolbar' or 'checkbox'
The style of button to display.
values_trait : str
For a "button" or "toolbar" style, the name of an enum
trait whose values will populate a drop-down menu on the button.
The selected value will replace the label on the button.
orientation : 'horizontal' or 'vertical'
The orientation of the label relative to the image.
width_padding : integer between 0 and 31
Extra padding (in pixels) added to the left and right sides of
the button.
height_padding : integer between 0 and 31
Extra padding (in pixels) added to the top and bottom of the
button.
view : traitsui View, optional
An optional View to display when the button is clicked.
"""
def __init__(
self,
label="",
image=None,
style="toolbar",
orientation="vertical",
width_padding=2,
height_padding=2,
**metadata
):
super(ToolbarButton, self).__init__(
label,
image=image,
style=style,
orientation=orientation,
width_padding=width_padding,
height_padding=height_padding,
**metadata
)
class Either(TraitType):
""" A trait type whose value can be any of of a specified list of traits.
Parameters
----------
*traits
Arguments that define allowable trait values.
**metadata
Trait metadata for the trait.
Attributes
----------
trait_maker : TraitHandler
A TraitHandler generated by _TraitMaker from the arguments.
"""
def __init__(self, *traits, **metadata):
self.trait_maker = _TraitMaker(
metadata.pop("default", None), *traits, **metadata
)
def as_ctrait(self):
""" Returns a CTrait corresponding to the trait defined by this class.
"""
return self.trait_maker.as_ctrait()
class _NoneTrait(TraitType):
""" Defines a trait that only accepts the None value
This is primarily used for supporting ``Union``.
"""
info_text = "None"
default_value = None
default_value_type = DefaultValue.constant
def __init__(self, **metadata):
default_value = metadata.pop("default_value", None)
if default_value is not None:
raise ValueError("Cannot set default value {} "
"for _NoneTrait".format(default_value))
super(_NoneTrait, self).__init__(**metadata)
def validate(self, obj, name, value):
if value is None:
return value
self.error(obj, name, value)
class Union(TraitType):
""" Defines a trait whose value can be any of of a specified list of
trait types or list of trait type instances or None
If the default value is not defined on Union, the default value from the
first trait will be used.
"""
def __init__(self, *traits, **metadata):
self.list_ctrait_instances = []
if not traits:
traits = (_NoneTrait,)
for trait in traits:
if trait is None:
trait = _NoneTrait
ctrait_instance = trait_cast(trait)
if ctrait_instance is None:
raise ValueError("Union trait declaration expects a trait "
"type or an instance of trait type or None,"
" but got {!r} instead".format(trait))
self.list_ctrait_instances.append(ctrait_instance)
# ``Either`` uses 'default' for defining static default values.
# Raise if 'default' is found in order to help code migrate to Union
if "default" in metadata:
raise ValueError(
"Union default value should be set via 'default_value', not "
"'default'."
)
default_value = None
if 'default_value' in metadata:
default_value = metadata.pop("default_value")
elif self.list_ctrait_instances:
default_value = self.list_ctrait_instances[0].default
self.default_value_type = _infer_default_value_type(default_value)
super().__init__(default_value, **metadata)
def validate(self, obj, name, value):
""" Return the value by the first trait in the list that can
validate the assigned value, raise an error if none of them can.
"""
for trait_type_instance in self.list_ctrait_instances:
try:
return trait_type_instance.validate(obj, name, value)
except TraitError:
pass
self.error(obj, name, value)
def info(self):
return " or ".join([ctrait.info() for ctrait in
self.list_ctrait_instances])
def inner_traits(self):
return tuple(self.list_ctrait_instances)
def get_editor(self, trait):
from traitsui.api import TextEditor, CompoundEditor
the_editors = [x.get_editor() for x in self.list_ctrait_instances]
text_editor = TextEditor()
count = 0
editors = []
for editor in the_editors:
if isinstance(text_editor, editor.__class__):
count += 1
if count > 1:
continue
editors.append(editor)
return CompoundEditor(editors=editors)
# -------------------------------------------------------------------------------
# 'Symbol' trait:
# -------------------------------------------------------------------------------
class Symbol(TraitType):
""" A property trait type that refers to a Python object by name.
The value set to the trait must be a value of the form
``'[package.package...package.]module[:symbol[([arg1,...,argn])]]'``
which is imported and evaluated to get underlying value.
The value returned by the trait is the actual object that this string
refers to. The value is cached, so any calls are only evaluated once.
"""
#: A description of the type of value this trait accepts:
info_text = (
"an object or a string of the form "
"'[package.package...package.]module[:symbol[([arg1,...,argn])]]' "
"specifying where to locate the object"
)
def get(self, object, name):
value = object.__dict__.get(name, Undefined)
if value is Undefined:
cache = TraitsCache + name
ref = object.__dict__.get(cache)
if ref is None:
object.__dict__[cache] = ref = object.trait(
name
).default_value_for(object, name)
if isinstance(ref, str):
object.__dict__[name] = value = self._resolve(ref)
return value
def set(self, object, name, value):
dict = object.__dict__
old = dict.get(name, Undefined)
if isinstance(value, str):
dict.pop(name, None)
dict[TraitsCache + name] = value
object.trait_property_changed(name, old)
else:
dict[name] = value
object.trait_property_changed(name, old, value)
def _resolve(self, ref):
try:
elements = ref.split("(", 1)
symbol = import_symbol(elements[0])
if len(elements) == 1:
return symbol
args = eval("(" + elements[1])
if not isinstance(args, tuple):
args = (args,)
return symbol(*args)
except Exception:
raise TraitError(
"Could not resolve '%s' into a valid symbol." % ref
)
class UUID(TraitType):
""" A read-only trait type whose value is a globally unique UUID (type 4).
Parameters
----------
can_init : bool
Whether the value can be set during object instantiation. Otherwise
the UUID is generated automatically.
Example
-------
Passing `can_init=True` allows the UUID value to be set during
object instantiation, e.g.::
class A(HasTraits):
id = UUID
class B(HasTraits):
id = UUID(can_init=True)
# TraitError!
A(id=uuid.uuid4())
# Okay!
B(id=uuid.uuid4())
Note however that in both cases, the UUID trait is set automatically
to a `uuid.UUID` instance (assuming none is provided during initialization
in the latter case).
"""
#: A description of the type of value this trait accepts:
info_text = "a read-only UUID"
def __init__(self, can_init=False, **metadata):
super(UUID, self).__init__(None, **metadata)
self.can_init = can_init
def validate(self, object, name, value):
""" Raises an error, since no values can be assigned to the trait.
"""
if not self.can_init:
raise TraitError(
"The '%s' trait of %s instance is a read-only "
"UUID." % (name, class_of(object))
)
if object.traits_inited():
msg = ("Initializable UUID trait is read-only "
"after initialization")
raise TraitError(msg)
if isinstance(value, uuid.UUID):
return value
try:
# Construct the UUID from a string
return uuid.UUID(value)
except ValueError:
msg = ("The '{}' trait of '{}' expects an RFC 4122-compatible "
"UUID value, but '{}' was given")
raise TraitError(msg.format(name, type(object).__name__, value))
def get_default_value(self):
""" Return a Traits default value tuple for the trait.
This uses the _create_uuid method to generate the defualt value.
"""
return (
DefaultValue.callable_and_args,
(self._create_uuid, (), None),
)
# -- Private Methods ---------------------------------------------------
def _create_uuid(self):
return uuid.uuid4()
class WeakRef(Instance):
""" A trait type holding a weak reference to an instance of a class.
Only a weak reference is maintained to any object assigned to a WeakRef
trait. If no other references exist to the assigned value, the value
may be garbage collected, in which case the value of the trait becomes
None. In all other cases, the value returned by the trait is the
original object.
Parameters
----------
klass : class, str or instance
The object that forms the basis for the trait. If *klass* is
omitted, then values must be an instance of HasTraits. If a string,
the value will be resolved to a class object at runtime.
allow_none : boolean
Indicates whether None can be _assigned_. The trait attribute may
give a None value if the object referred to has been garbage collected
even if allow_none is False.
adapt : str
How to use the adaptation infrastructure when setting the value.
"""
def __init__(
self,
klass="traits.has_traits.HasTraits",
allow_none=False,
adapt="yes",
**metadata
):
metadata.setdefault("copy", "ref")
super(WeakRef, self).__init__(
klass,
allow_none=allow_none,
adapt=adapt,
module=get_module_name(),
**metadata
)
def get(self, object, name):
value = getattr(object, name + "_", None)
if value is not None:
return value.value()
return None
def set(self, object, name, value):
old = self.get(object, name)
if value is None:
object.__dict__[name + "_"] = None
else:
object.__dict__[name + "_"] = HandleWeakRef(object, name, value)
if value is not old:
object.trait_property_changed(name, old, value)
def resolve_class(self, object, name, value):
# fixme: We have to override this method to prevent the 'fast validate'
# from being set up, since the trait using this is a 'property' style
# trait which is not currently compatible with the 'fast_validate'
# style (causes internal Python SystemError messages).
klass = self.find_class(self.klass)
if klass is None:
self.validate_failed(object, name, value)
self.klass = klass
#: A trait type for datetime.date instances.
Date = BaseInstance(datetime.date, editor=date_editor)
#: A trait type for datetime.datetime instances.
Datetime = BaseInstance(datetime.datetime, editor=datetime_editor)
#: A trait type for datetime.time instances.
Time = BaseInstance(datetime.time, editor=time_editor)
# Predefined, reusable trait instances
# Everything from this point onwards is deprecated, and has a simple
# drop-in replacement.
#: A trait whose value must support a specified protocol. This is
#: an alias for :class:`Supports`. Use ``Supports`` instead.
AdaptedTo = Supports
#: A trait whose value must be a (Unicode) string. This is an alias for
#: :class:`BaseStr`. Use ``BaseStr`` instead.
BaseUnicode = BaseStr
#: A trait whose value must be a (Unicode) string, using a C-level
#: fast validator. This is an alias for :class:`Str`. Use ``Str`` instead.
Unicode = Str
#: A trait whose value must be a (Unicode) string and which supports
#: coercions of non-string values to string. This is
#: an alias for :class:`BaseCStr`. Use ``BaseCStr`` instead.
BaseCUnicode = BaseCStr
#: A trait whose value must be a (Unicode) string and which supports
#: coercions of non-string values to string, using a C-level fast validator.
#: This is an alias for :class:`CStr`. Use ``CStr`` instead.
CUnicode = CStr
#: A trait whose value must be an integer. This is an alias for
#: :class:`BaseInt`. Use ``BaseInt`` instead.
BaseLong = BaseInt
#: A trait whose value must be an integer, using a C-level fast validator.
#: This is an alias for :class:`Int`. Use ``Int`` instead.
Long = Int
#: A trait whose value must be an integer and which supports coercions
#: of non-integer values to integer. This is an alias for
#: :class:`BaseCInt`. Use ``BaseCInt`` instead.
BaseCLong = BaseCInt
#: A trait whose value must be an integer and which supports coercions
#: of non-integer values to integer, using a C-level fast validator.
#: This is an alias for :class:`CInt`. Use ``CInt`` instead.
CLong = CInt
#: Synonym for Bool; default value is ``False``. This trait type is
#: deprecated. Use ``Bool(False)`` or ``Bool()`` instead.
false = Bool
#: Boolean values only; default value is ``True``. This trait type is
#: deprecated. Use ``Bool(True)`` instead.
true = Bool(True)
#: Allows any value to be assigned; no type-checking is performed.
#: Default value is ``Undefined``. This trait type is deprecated. Use
#: ``Any(Undefined)`` instead.
undefined = Any(Undefined)
# -- List Traits --------------------------------------------------------------
#: List of integer values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Int)`` instead.
ListInt = List(int)
#: List of float values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Float)`` instead.
ListFloat = List(float)
#: List of string values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Str)`` instead.
ListStr = List(str)
#: List of string values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Str)`` instead.
ListUnicode = List(str)
#: List of complex values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Complex)`` instead.
ListComplex = List(complex)
#: List of Boolean values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Bool)`` instead.
ListBool = List(bool)
#: List of function values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Instance(types.FunctionType, allow_none=False))``
#: instead.
ListFunction = List(FunctionType)
#: List of method values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(Instance(types.MethodType, allow_none=False))``
#: instead.
ListMethod = List(MethodType)
#: List of container type values; default value is ``[]``. This trait type is
#: deprecated. Use ``List(This(allow_none=False))`` instead.
ListThis = List(This(allow_none=False))
# -- Dictionary Traits --------------------------------------------------------
#: Only a dictionary with strings as keys can be assigned; only string keys
#: can be inserted. The default value is {}. This trait type is deprecated. Use
#: ``Dict(Str, Any)`` instead.
DictStrAny = Dict(str, Any)
#: Only a dictionary mapping strings to strings can be assigned; only string
#: keys with string values can be inserted. The default value is {}. This trait
#: type is deprecated. Use ``Dict(Str, Str)`` instead.
DictStrStr = Dict(str, str)
#: Only a dictionary mapping strings to integers can be assigned; only string
#: keys with integer values can be inserted. The default value is {}. This
#: trait type is deprecated. Use ``Dict(Str, Int)`` instead.
DictStrInt = Dict(str, int)
#: Only a dictionary mapping strings to floats can be assigned; only string
#: keys with float values can be inserted. The default value is {}. This trait
#: type is deprecated. Use ``Dict(Str, Float)`` instead.
DictStrFloat = Dict(str, float)
#: Only a dictionary mapping strings to booleans can be assigned; only string
#: keys with boolean values can be inserted. The default value is {}. This
#: trait type is deprecated. Use ``Dict(Str, Bool)`` instead.
DictStrBool = Dict(str, bool)
#: Only a dictionary mapping strings to lists can be assigned; only string keys
#: with list values can be inserted. The default value is {}. This trait type
#: is deprecated. Use ``Dict(Str, List)`` instead.
DictStrList = Dict(str, list)