Source code for pyanno.test.test_sampling
# Copyright (c) 2011, Enthought, Ltd.
# Author: Pietro Berkes <pberkes@enthought.com>
# License: Modified BSD license (2-clause)
import unittest
import numpy as np
from numpy import testing
import scipy.stats
from pyanno.sampling import optimize_step_size, sample_distribution
[docs]class TestSampling(unittest.TestCase):
[docs]    def test_sample_distribution(self):
        # check sample_distribution's ability to sample from a
        # fixed beta distribution
        nclasses = 8
        nitems = 1000
        # pick random parameters 
        a = np.random.uniform(1., 5., size=(nclasses,))
        b = np.random.uniform(4., 6., size=(nclasses,))
        # sample values from a beta distribution with fixed parameters
        values = np.empty((nitems, nclasses))
        for k in range(nclasses):
            values[:,k] = scipy.stats.beta.rvs(a[k], b[k], size=nitems)
        arguments = values
        def beta_likelihood(params, values):
            a = params[:nclasses].copy()
            b = params[nclasses:].copy()
            llhood = 0.
            for k in range(nclasses):
                llhood += scipy.stats.beta._logpdf(values[:,k], a[k],
                                                   b[k]).sum()
            return llhood
        x_lower = np.zeros((nclasses*2,)) + 0.5
        x_upper = np.zeros((nclasses*2,)) + 8.
        x0 = np.random.uniform(1., 7.5, size=(nclasses*2,))
        dx = optimize_step_size(beta_likelihood, x0.copy(), arguments,
                                x_lower, x_upper,
                                1000, 100, 0.3, 0.1)
        njumps = 3000
        samples = sample_distribution(beta_likelihood, x0.copy(), arguments,
                                      dx, njumps, x_lower, x_upper)
        samples = samples[100:]
        z = np.absolute((samples.mean(0) - np.r_[a,b]) / samples.std(0))
        testing.assert_array_less(z, 3.)
  
if __name__ == '__main__':
    unittest.main()