Source code for pyanno.test.test_modelA

# Copyright (c) 2011, Enthought, Ltd.
# Author: Pietro Berkes <pberkes@enthought.com>
# License: Modified BSD license (2-clause)

import unittest
import numpy as np
from numpy import testing
from pyanno.models import ModelA
from pyanno.util import is_valid, PyannoValueError
from pyanno.util import MISSING_VALUE as MV

[docs]class TestModelA(unittest.TestCase):
[docs] def test_generate_incorrectness(self): nitems = 50000 nclasses = 3 theta = np.array([0.3, 0.6, 0.7]) model = ModelA.create_initial_state(nclasses) incorrect = model._generate_incorrectness(nitems, theta) correct_freq = 1. - incorrect.sum(0)/float(nitems) testing.assert_allclose(correct_freq, theta, atol=1e-2, rtol=0)
[docs] def test_generate_agreement(self): nclasses = 4 # when all correct, only index 0 (aaa) is possible nitems = 100 model = ModelA.create_initial_state(nclasses) incorrect = np.zeros((nitems, 3), dtype=bool) agreement = model._generate_agreement(incorrect) self.assertTrue(agreement.shape, (nitems,)) self.assertTrue(np.all(agreement == 0)) # all incorrect, check frequency corresponds to alpha[3:] nitems = 10000 model = ModelA.create_initial_state(nclasses) incorrect = np.ones((nitems, 3), dtype=bool) agreement = model._generate_agreement(incorrect) frequency = np.bincount(agreement, minlength=5) / float(nitems) expected = model._compute_alpha()[3:] testing.assert_allclose(frequency[:-1], expected, atol=1e-1, rtol=0)
[docs] def test_generate_triplet_annotation(self): nitems = 100 nclasses = 4 omega = np.array([0.22, 0.38, 0.3, 0.1]) model = ModelA.create_initial_state(nclasses, omega=omega) # check that one gets the expected number of unique items # for each agreement pattern theta = np.array([0.3, 0.6, 0.7]) incorrect = model._generate_incorrectness(nitems, theta) agreement = model._generate_agreement(incorrect) annotations = model._generate_annotations(agreement) # map of agreement index to number of different items agreement_to_number = {0: 1, 1: 2, 2: 2, 3: 2, 4: 3} for i in xrange(nitems): self.assertEqual(len(set(annotations[i,:])), agreement_to_number[agreement[i]]) # always agreeing: frequency should match the omegas^3 (Table 5) nitems = 50000 agreement = np.empty((nitems,), dtype=int) agreement.fill(0) # aaa agreement pattern annotations = model._generate_annotations(agreement).flatten() frequencies = (np.bincount(annotations, minlength=nclasses) / float(nitems*3)) expected = model.omega**3. / (model.omega**3.).sum() testing.assert_allclose(frequencies, expected, atol=1e-2, rtol=0)
def test_generate_annotations(self): nitems = 2000*8 nclasses = 3 # create random model model = ModelA.create_initial_state(nclasses) # create random data annotations = model.generate_annotations(nitems) self.assertEqual(annotations.shape, (nitems, model.nannotators)) self.assertTrue(np.all(is_valid(annotations).sum(1) == 3)) freqs = (np.array([(annotations==psi).sum() / float(nitems*3) for psi in range(nclasses)])) testing.assert_allclose(model.omega, freqs, atol=1e-1, rtol=0.)
[docs] def test_ml_estimation(self): # test simple model, check that we get to global optimum nclasses, nitems = 3, 1000*8 # create random model and data (this is our ground truth model) theta = np.array([0.5, 0.9, 0.6, 0.65, 0.87, 0.54, 0.9, 0.78]) true_model = ModelA.create_initial_state(nclasses, theta=theta) annotations = true_model.generate_annotations(nitems) # create a new, empty model and infer back the parameters model = ModelA.create_initial_state(nclasses, omega=true_model.omega) before_llhood = model.log_likelihood(annotations) model.mle(annotations, estimate_omega=False) after_llhood = model.log_likelihood(annotations) testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_llhood, before_llhood)
[docs] def test_map_estimation(self): # test simple model, check that we get to global optimum nclasses, nitems = 3, 1000*8 # create random model and data (this is our ground truth model) theta = np.array([0.5, 0.9, 0.6, 0.65, 0.87, 0.54, 0.9, 0.78]) true_model = ModelA.create_initial_state(nclasses, theta=theta) annotations = true_model.generate_annotations(nitems) # create a new, empty model and infer back the parameters model = ModelA.create_initial_state(nclasses, omega=true_model.omega) before_obj = model.log_likelihood(annotations) + model._log_prior() model.map(annotations, estimate_omega=False) after_obj = model.log_likelihood(annotations) + model._log_prior() testing.assert_allclose(model.theta, true_model.theta, atol=1e-1, rtol=0.) self.assertGreater(after_obj, before_obj)
[docs] def test_log_likelihood(self): # check that log likelihood is maximal at true parameters nclasses, nitems = 3, 1500*8 # create random model and data (this is our ground truth model) true_model = ModelA.create_initial_state(nclasses) annotations = true_model.generate_annotations(nitems) max_llhood = true_model.log_likelihood(annotations) # perturb omega for _ in xrange(20): theta = true_model.theta omega = np.random.normal(loc=true_model.omega, scale=0.1) omega = np.clip(omega, 0.001, 0.999) omega /= omega.sum() model = ModelA(nclasses, omega=omega, theta=theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood) # perturb theta for _ in xrange(20): omega = true_model.omega theta = np.random.normal(loc=true_model.theta, scale=0.1) theta = np.clip(theta, 0., 1.) model = ModelA(nclasses, omega=omega, theta=theta) llhood = model.log_likelihood(annotations) self.assertGreater(max_llhood, llhood)
[docs] def test_sampling_theta(self): nclasses, nitems = 3, 500*8 nsamples = 1000 # create random model (this is our ground truth model) true_model = ModelA.create_initial_state(nclasses) # create random data annotations = true_model.generate_annotations(nitems) # create a new model model = ModelA.create_initial_state(nclasses) # get optimal parameters (to make sure we're at the optimum) model.map(annotations) # modify parameters, to give false start to sampler real_theta = model.theta.copy() model.theta = model._random_theta(model.nannotators) # save current parameters omega_before, theta_before = model.omega.copy(), model.theta.copy() samples = model.sample_posterior_over_accuracy( annotations, nsamples, burn_in_samples = 100, thin_samples = 2 ) # test we receive the correct number of samples self.assertEqual(samples.shape[0], nsamples) # test: the mean of the sampled parameters is the same as the MLE one # (up to 3 standard deviations of the estimate sample distribution) testing.assert_array_less(np.absolute(samples.mean(0)-real_theta), 3.*samples.std(0)) # check that original parameters are intact testing.assert_equal(model.omega, omega_before) testing.assert_equal(model.theta, theta_before)
[docs] def test_inference(self): # annotators agreeing, check that inferred correctness is either # CCC or III nclasses, nitems = 4, 50*8 # create random model (this is our ground truth model) omega = np.ones((nclasses,)) / float(nclasses) theta = np.ones((8,)) * 0.9999 true_model = ModelA(nclasses, theta, omega) # create random data annotations = true_model.generate_annotations(nitems) posterior = true_model.infer_labels(annotations) testing.assert_allclose(posterior.sum(1), 1., atol=1e-6, rtol=0.) inferred = posterior.argmax(1) expected = annotations.max(1) testing.assert_equal(inferred, expected) self.assertTrue(np.all(posterior[np.arange(nitems),inferred] > 0.999)) # at chance, disagreeing annotators: most accurate wins omega = np.ones((nclasses,)) / float(nclasses) theta = np.ones((8,)) theta[1:4] = np.array([0.9, 0.6, 0.5]) model = ModelA(nclasses, theta, omega) data = np.array([[MV, 0, 1, 2, MV, MV, MV, MV,]]) posterior = model.infer_labels(data) posterior = posterior[0] self.assertTrue(posterior[0] > posterior[1] > posterior[2] > posterior[3])
[docs] def test_generate_annotations(self): # test to check that annotations are masked correctly when the number # of items is not divisible by the number of annotators nclasses, nitems = 5, 8*30+3 model = ModelA.create_initial_state(nclasses) annotations = model.generate_annotations(nitems) valid = is_valid(annotations) # check that on every row there are exactly 3 annotations self.assertTrue(np.all(valid.sum(1) == 3))
[docs] def test_fix_map_nans(self): # bug is: when the number of classes in the annotations is smaller # than the one assumed by the model, the objective function of the # MAP estimation returns 'nan' true_nclasses = 3 true_model = ModelA.create_initial_state(true_nclasses) annotations = true_model.generate_annotations(100) nclasses = 4 model = ModelA.create_initial_state(nclasses) model.map(annotations) self.assertFalse(np.isnan(model.log_likelihood(annotations)))
[docs] def test_annotations_compatibility(self): nclasses = 3 model = ModelA.create_initial_state(nclasses) # test method that checks annotations compatibility anno = np.array([[MV, MV, 0, 0, 1, MV, MV, MV]]) self.assertTrue(model.are_annotations_compatible(anno)) anno = np.array([[MV, MV, 0, 0, 1, MV, MV, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[MV, MV, 0, 0, 3, MV, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[MV, MV, 0, 0, 2, 1, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno)) anno = np.array([[0, 0, MV, -2, MV, MV, MV, MV]]) self.assertFalse(model.are_annotations_compatible(anno))
[docs] def test_raise_error_on_incompatible_annotation(self): nclasses = 3 model = ModelA.create_initial_state(nclasses) anno = np.array([[MV, MV, 0, 0, 7, MV, MV, MV]]) with self.assertRaises(PyannoValueError): model.mle(anno) with self.assertRaises(PyannoValueError): model.map(anno) with self.assertRaises(PyannoValueError): model.sample_posterior_over_accuracy(anno, 10) with self.assertRaises(PyannoValueError): model.infer_labels(anno) with self.assertRaises(PyannoValueError): model.log_likelihood(anno)
if __name__ == '__main__': unittest.main()

Table Of Contents