# Copyright (c) 2011, Enthought, Ltd.
# Author: Pietro Berkes <pberkes@enthought.com>
# License: Modified BSD license (2-clause)
from __future__ import division
import unittest
import numpy as np
import pyanno
import pyanno.measures.agreement as pma
import pyanno.measures.covariation as pmc
import pyanno.measures.helpers as pmh
import pyanno.measures.distances as pmd
from pyanno.util import MISSING_VALUE as MV, is_valid, PyannoValueError
[docs]class Bunch(object):
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)
 
[docs]class TestMeasures(unittest.TestCase):
[docs]    def setUp(self):
        """Define fixtures."""
        # ---- annotations for fully agreeing annotators
        nitems = 100
        nannotators = 5
        nclasses = 4
        # perfect agreement, 2 missing annotations per row
        annotations = np.empty((nitems, nannotators), dtype=int)
        for i in xrange(nitems):
            annotations[i,:] = np.random.randint(nclasses)
            perm = np.random.permutation(nclasses)
            annotations[i,perm[0:2]] = MV
        self.full_agreement = Bunch(nitems=nitems,
                                    nannotators=nannotators,
                                    nclasses=nclasses,
                                    annotations=annotations)
        # ---- test example from
        # http://en.wikipedia.org/wiki/Krippendorff%27s_Alpha#A_computational_example
        annotations = np.array(
            [
                [MV,  1, MV],
                [MV, MV, MV],
                [MV,  2,  2],
                [MV,  1,  1],
                [MV,  3,  3],
                [ 3,  3,  4],
                [ 4,  4,  4],
                [ 1,  3, MV],
                [ 2, MV,  2],
                [ 1, MV,  1],
                [ 1, MV,  1],
                [ 3, MV,  3],
                [ 3, MV,  3],
                [MV, MV, MV],
                [ 3, MV,  4]
            ]
        )
        annotations[annotations>=0] -= 1
        coincidence = np.array(
            [
                [6, 0, 1, 0],
                [0, 4, 0, 0],
                [1, 0, 7, 2],
                [0, 0, 2, 3]
            ]
        )
        nc = np.array([7, 4, 10, 5])
        self.krippendorff_example = Bunch(annotations = annotations,
                                          coincidence = coincidence,
                                          nc = nc,
                                          nclasses = 4,
                                          alpha_diagonal = 0.811,
                                          alpha_binary = 0.691)
        # ---- Cronbach's alpha Excell example
        annotations = np.array(
            [
                [0, 1, 1, 1, 1],
                [1, 0, 0, 0, 1],
                [0, 0, 0, 1, 1],
                [1, 0, 1, 0, 1],
                [1, 0, 1, 0, 1],
                [1, 0, 1, 1, 1],
                [0, 0, 0, 0, 0],
                [0, 1, 1, 1, 1],
                [1, 1, 1, 0, 1],
                [0, 0, 1, 1, 1]
            ]
        )
        self.cronbach_example = Bunch(annotations = annotations,
                                      nclasses = 2,
                                      alpha = 0.619658)
        # ---- Cohen's kappa example from
        # http://r.789695.n4.nabble.com/Cohen-s-Kappa-for-beginners-td2229658.html
        annotations = np.array(
            [
                [1, 2, 3, 1],
                [1, 3, 3, 1]
            ]
        ).T - 1
        self.cohen_example = Bunch(annotations = annotations,
                                   nclasses = 3,
                                   kappa = 0.6)
        # ---- Test for annotations with no valid entry
        annotations = np.empty((10, 8), dtype=int)
        annotations.fill(MV)
        self.invalid_test = Bunch(annotations = annotations)
 
[docs]    def test_confusion_matrix(self):
        anno1 = np.array([0, 0, 1, 1, 2, 3])
        anno2 = np.array([0, 1, 1, 1, 2, 2])
        expected = np.array(
            [
                [1, 1, 0, 0],
                [0, 2, 0, 0],
                [0, 0, 1, 0],
                [0, 0, 1, 0]
            ])
        cm = pmh.confusion_matrix(anno1, anno2, 4)
        np.testing.assert_array_equal(cm, expected)
 
[docs]    def test_confusion_matrix_missing(self):
        """Test confusion matrix with missing data."""
        anno1 = np.array([0, 0, 1, 1, MV, 3])
        anno2 = np.array([0, MV, 1, 1, 2, 2])
        expected = np.array(
            [
                [1, 0, 0, 0],
                [0, 2, 0, 0],
                [0, 0, 0, 0],
                [0, 0, 1, 0]
            ])
        cm = pmh.confusion_matrix(anno1, anno2, 4)
        np.testing.assert_array_equal(cm, expected)
 
[docs]    def test_chance_agreement_same_frequency(self):
        distr = np.array([0.1, 0.5, 0.4])
        anno1 = pyanno.util.random_categorical(distr, nsamples=10000)
        anno2 = pyanno.util.random_categorical(distr, nsamples=10000)
        expected = distr ** 2.
        freqs = pmh.chance_agreement_same_frequency(anno1, anno2, len(distr))
        np.testing.assert_allclose(freqs, expected, atol=1e-2, rtol=0.)
 
[docs]    def test_chance_agreement_different_frequency(self):
        distr1 = np.array([0.1, 0.5, 0.4])
        distr2 = np.array([0.6, 0.2, 0.2])
        anno1 = pyanno.util.random_categorical(distr1, nsamples=10000)
        anno2 = pyanno.util.random_categorical(distr2, nsamples=10000)
        expected = distr1 * distr2
        freqs = pmh.chance_agreement_different_frequency(anno1, anno2,
                                                         len(distr1))
        np.testing.assert_allclose(freqs, expected, atol=1e-2, rtol=0.)
 
[docs]    def test_observed_agreement(self):
        anno1 = np.array([0, 0, 1, 1, MV, 3])
        anno2 = np.array([0, MV, 1, 1, MV, 2])
        nvalid = np.sum(is_valid(anno1) & is_valid(anno2))
        expected = np.array([1., 2., 0., 0.]) / nvalid
        freqs = pmh.observed_agreement_frequency(anno1, anno2, 4)
        np.testing.assert_array_equal(freqs, expected)
 
[docs]    def test_cohens_kappa(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pma.cohens_kappa(fa.annotations[:,0],
                                                fa.annotations[:,1]),
                               1.0, 6)
 
[docs]    def test_cohens_weighted_kappa(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pma.cohens_weighted_kappa(fa.annotations[:,0],
                                                         fa.annotations[:,1]),
                               1.0, 6)
 
[docs]    def test_cohens_weighted_kappa2(self):
        # cohen's weighted kappa is the same as cohen's kappa when
        # the weights are 0. on the diagonal and 1. elsewhere
        anno1 = np.array([0, 0, 1, 2, 1, MV, 3])
        anno2 = np.array([0, MV, 1, 0, 1, MV, 2])
        weighted_kappa = pma.cohens_weighted_kappa(anno1, anno2,
                                                   pmd.binary_distance)
        cohens_kappa = pma.cohens_kappa(anno1, anno2)
        self.assertAlmostEqual(weighted_kappa, cohens_kappa, 6)
 
[docs]    def test_cohens_kappa2(self):
        ce = self.cohen_example
        kappa = pma.cohens_kappa(ce.annotations[:,0],
                                ce.annotations[:,1])
        self.assertAlmostEqual(kappa, ce.kappa, 6)
 
[docs]    def test_scotts_pi(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pma.scotts_pi(fa.annotations[:,0],
                                             fa.annotations[:,1]),
                               1.0, 6)
 
[docs]    def test_fleiss_kappa_nannotations(self):
        # same example as
        # http://en.wikipedia.org/wiki/Fleiss%27_kappa#Worked_example
        nannotations = np.array(
            [
                [0, 0, 0, 0, 14],
                [0, 2, 6, 4, 2],
                [0, 0, 3, 5, 6],
                [0, 3, 9, 2, 0],
                [2, 2, 8, 1, 1],
                [7, 7, 0, 0, 0],
                [3, 2, 6, 3, 0],
                [2, 5, 3, 2, 2],
                [6, 5, 2, 1, 0],
                [0, 2, 2, 3, 7]
            ]
        )
        expected = 0.21
        kappa = pma._fleiss_kappa_nannotations(nannotations)
        self.assertAlmostEqual(kappa, expected, 2)
 
[docs]    def test_fleiss_kappa(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pma.fleiss_kappa(fa.annotations, fa.nclasses),
                               1.0, 6)
        # unequal number of annotators per row
        fa.annotations[0,:] = MV
        self.assertRaises(PyannoValueError, pma.fleiss_kappa, fa.annotations)
 
[docs]    def test_krippendorffs_alpha(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pma.krippendorffs_alpha(fa.annotations),
                               1.0, 6)
 
[docs]    def test_coincidence_matrix(self):
        # test example from
        # http://en.wikipedia.org/wiki/Krippendorff%27s_Alpha#A_computational_example
        kr = self.krippendorff_example
        coincidence = pmh.coincidence_matrix(kr.annotations, kr.nclasses)
        np.testing.assert_allclose(coincidence, kr.coincidence)
 
[docs]    def test_krippendorffs_alpha2(self):
        # test example from
        # http://en.wikipedia.org/wiki/Krippendorff%27s_Alpha#A_computational_example
        kr = self.krippendorff_example
        alpha = pma.krippendorffs_alpha(kr.annotations,
                                        metric_func=pmd.binary_distance)
        self.assertAlmostEqual(alpha, kr.alpha_binary, 3)
        alpha = pma.krippendorffs_alpha(kr.annotations,
                                        metric_func=pmd.diagonal_distance)
        self.assertAlmostEqual(alpha, kr.alpha_diagonal, 3)
 
[docs]    def test_pearsons_rho(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pmc.pearsons_rho(fa.annotations[:,0],
                                                fa.annotations[:,1]),
                               1.0, 6)
 
[docs]    def test_spearmans_rho(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        self.assertAlmostEqual(pmc.spearmans_rho(fa.annotations[:,0],
                                                 fa.annotations[:,1]),
                               1.0, 6)
 
[docs]    def test_cronbachs_alpha(self):
        # test basic functionality with full agreement, missing annotations
        fa = self.full_agreement
        alpha = pmc.cronbachs_alpha(fa.annotations)
        alpha *= (fa.nitems - 1.) / fa.nitems
        self.assertAlmostEqual(alpha, 1.0, 6)
 
[docs]    def test_cronbachs_alpha2(self):
        # test basic functionality with full agreement, missing annotations
        ce = self.cronbach_example
        self.assertAlmostEqual(pmc.cronbachs_alpha(ce.annotations),
                               ce.alpha, 6)
 
[docs]    def test_matrix(self):
        ke = self.krippendorff_example
        mat = pyanno.measures.pairwise_matrix(pma.cohens_kappa,
                                              ke.annotations, nclasses=4)
        self.assertAlmostEqual(mat[1,1], 1., 6)
        kappa = pma.cohens_kappa(ke.annotations[:,2], ke.annotations[:,0])
        self.assertAlmostEqual(mat[2,0], kappa)
 
[docs]    def test_all_invalid(self):
        # behavior: all measures should return np.nan for a set of
        # annotations with no valid entry
        anno = self.invalid_test.annotations
        self.assert_(
            np.isnan(pma.scotts_pi(anno[:,0], anno[:,1], nclasses=4))
        )
        self.assert_(
            np.isnan(pma.cohens_kappa(anno[:,0], anno[:,1], nclasses=3))
        )
        self.assert_(
            np.isnan(pma.cohens_weighted_kappa(anno[:,0], anno[:,1],
                                               nclasses=5))
        )
        self.assert_(
            np.isnan(pma.fleiss_kappa(anno, nclasses=4))
        )
        self.assert_(
            np.isnan(pma.krippendorffs_alpha(anno, nclasses=7))
        )
        self.assert_(
            np.isnan(pmc.pearsons_rho(anno[:,0], anno[:,1], nclasses=4))
        )
        self.assert_(
            np.isnan(pmc.spearmans_rho(anno[:,0], anno[:,1], nclasses=4))
        )
        self.assert_(
            np.isnan(pmc.cronbachs_alpha(anno, nclasses=4))
        )
  
if __name__ == '__main__':
    unittest.main()