Source code for pyanno.plots.hinton_plot

# Copyright (c) 2011, Enthought, Ltd.
# Author: Pietro Berkes <pberkes@enthought.com>
# License: Modified BSD license (2-clause)
from chaco.color_bar import ColorBar
from chaco.data_range_1d import DataRange1D

from chaco.data_range_2d import DataRange2D
from chaco.default_colormaps import Reds
from chaco.label_axis import LabelAxis
from chaco.linear_mapper import LinearMapper
from chaco.plot_containers import HPlotContainer
from chaco.scales.scales import FixedScale
from chaco.scales_tick_generator import ScalesTickGenerator
from chaco.api import ArrayPlotData, Plot
from chaco.base import n_gon

from enable.component_editor import ComponentEditor
from traits.has_traits import on_trait_change
from traits.trait_types import ListFloat, Any
from traits.api import Instance
from traitsui.item import Item

import numpy as np
from pyanno.plots.plot_tools import get_class_color
from pyanno.plots.plots_superclass import PyannoPlotContainer


class HintonDiagramPlot(PyannoPlotContainer):
    """Defines a Hinton diagram view of a discrete probability distribution.

    A Hinton diagram displays a probability distribution as a series of
    squares, with area proportional to the probability mass of each element.

    The plot updates automatically whenever the attribute `data` is modified.
    """

    #### Traits definition ####################################################

    # data to be displayed
    data = ListFloat

    #### plot-related traits
    plot_data = Instance(ArrayPlotData)
    plot = Any


    @on_trait_change('data', post_init=True)
    def _update_data(self):
        distr_len = len(self.data)
        plot_data = self.plot_data

        # centers of the squares
        centers = [(i, 0.5) for i in xrange(1, distr_len + 1)]

        for idx, center in enumerate(centers):
            # draw square with area proportional to probability mass
            r = np.sqrt(self.data[idx] / (2.*np.pi))
            npoints = n_gon(center=center, r=r, nsides=40)
            nxarray, nyarray = np.transpose(npoints)
            # save in dataarray
            plot_data.set_data('x%d' % idx, nxarray)
            plot_data.set_data('y%d' % idx, nyarray)


    def _plot_data_default(self):
        self.plot_data = ArrayPlotData()
        self._update_data()
        return self.plot_data


    #### Plot definition ######################################################

    def _create_probability_axis(self, plot):
        """Create plot axis for probability values."""
        prob_axis = LabelAxis(
            plot,
            orientation='left',
            positions=[0.5, 0.5 + np.sqrt(0.25) / 2., 1.0],
            labels=['0', '0.25', '1']
        )
        prob_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(0.001))
        return prob_axis


    def _plot_default(self):
        distr_len = len(self.data)

        # PolygonPlot holding the circles of the Hinton diagram
        polyplot = Plot(self.plot_data)
        for idx in range(distr_len):
            p = polyplot.plot(('x%d' % idx, 'y%d' % idx),
                          type="polygon",
                          face_color=get_class_color(idx),
                          edge_color='black')

        self._set_title(polyplot)
        self._remove_grid_and_axes(polyplot)

        # create x axis for labels
        axis = self._create_increment_one_axis(polyplot, 1., distr_len, 'bottom')
        self._add_index_axis(polyplot, axis)

        # create y axis for probability density
        #prob_axis = self._create_probability_axis(polyplot)
        #polyplot.value_axis = prob_axis
        #polyplot.underlays.append(prob_axis)

        # tweak some of the plot properties
        range2d = DataRange2D(low=(0.5, 0.), high=(distr_len+0.5, 1.))
        polyplot.range2d = range2d
        polyplot.aspect_ratio = ((range2d.x_range.high - range2d.x_range.low)
                                 / (range2d.y_range.high - range2d.y_range.low))

        polyplot.border_visible = False
        polyplot.padding = [0, 0, 25, 25]

        # create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(use_backbuffer=True, valign='center')
        container.add(polyplot)
        container.bgcolor = 0xFFFFFF # light gray: 0xEEEEEE

        self.decorate_plot(container, self.data)
        return container


    #### View definition ######################################################

    resizable_plot_item = Item(
        'plot',
        editor=ComponentEditor(),
        resizable=True,
        show_label=False,
        width = 600,
        height = 400
        )

    traits_plot_item = Instance(Item)

    def _traits_plot_item_default(self):
        return Item(
                    'plot',
                    editor=ComponentEditor(),
                    resizable=False,
                    show_label=False,
                    height=-110,
                    )


[docs]def plot_hinton_diagram(data, **kwargs): """Display a plot of a Hinton diagram. This version of the Hinton diagram displays a probability distribution, or any list of numbers between 0 and 1, as a sequence of circles with area proportional to the value of each element. It can be used to display all 1D parameters of pyAnno models. Arguments --------- data : list of floats List of numbers between zero and one kwargs : dictionary Additional keyword arguments passed to the plot. The argument 'title' sets the title of the plot. """ hinton_diagram = HintonDiagramPlot(data=data, **kwargs) hinton_diagram.edit_traits(view='resizable_view') return hinton_diagram #### Testing and debugging ####################################################
def main(): """ Entry point for standalone testing/debugging. """ data = np.random.random(5) data /= data.sum() hinton_view = plot_hinton_diagram(data.tolist(), title='Debug plot_hinton_diagram') hinton_view.configure_traits() return hinton_view if __name__ == '__main__': hv = main()

Table Of Contents