chaco.examples.demo.basic.scatter_1d module

Scatter plot with auxilliary 1d plots

Shows a scatter plot of a set of random points, with auxilliary 1d plots of the data.

class chaco.examples.demo.basic.scatter_1d.Demo

Bases: traits.has_traits.HasTraits

chaco.examples.demo.basic.scatter_1d.randint(low, high=None, size=None, dtype='l')

Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low).

Parameters
  • low (int or array-like of ints) – Lowest (signed) integers to be drawn from the distribution (unless high=None, in which case this parameter is one above the highest such integer).

  • high (int or array-like of ints, optional) – If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if high=None). If array-like, must contain integer values

  • size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

  • dtype (dtype, optional) –

    Desired dtype of the result. All dtypes are determined by their name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is ‘np.int’.

    New in version 1.11.0.

Returns

outsize-shaped array of random integers from the appropriate distribution, or a single such random int if size not provided.

Return type

int or ndarray of ints

See also

random.random_integers

similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1], # random
       [3, 2, 2, 0]])

Generate a 1 x 3 array with 3 different upper bounds

>>> np.random.randint(1, [3, 5, 10])
array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> np.random.randint([1, 5, 7], 10)
array([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[ 8,  6,  9,  7], # random
       [ 1, 16,  9, 12]], dtype=uint8)
chaco.examples.demo.basic.scatter_1d.random(size=None)

Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-porting to the new random API.